// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void Predict(fastdeploy::pipeline::PPOCRv3 *model, int thread_id, const std::vector& images) { for (auto const &image_file : images) { auto im = cv::imread(image_file); fastdeploy::vision::OCRResult res; if (!model->Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << "Thread Id: " << thread_id << std::endl; std::cout << res.Str() << std::endl; } } void GetImageList(std::vector>* image_list, const std::string& image_file_path, int thread_num){ std::vector images; cv::glob(image_file_path, images, false); // number of image files in images folder size_t count = images.size(); size_t num = count / thread_num; for (int i = 0; i < thread_num; i++) { std::vector temp_list; if (i == thread_num - 1) { for (size_t j = i*num; j < count; j++){ temp_list.push_back(images[j]); } } else { for (size_t j = 0; j < num; j++){ temp_list.push_back(images[i * num + j]); } } (*image_list)[i] = temp_list; } } void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file_path, const fastdeploy::RuntimeOption& option, int thread_num) { auto det_model_file = det_model_dir + sep + "inference.pdmodel"; auto det_params_file = det_model_dir + sep + "inference.pdiparams"; auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto rec_model_file = rec_model_dir + sep + "inference.pdmodel"; auto rec_params_file = rec_model_dir + sep + "inference.pdiparams"; auto det_option = option; auto cls_option = option; auto rec_option = option; // The cls and rec model can inference a batch of images now. // User could initialize the inference batch size and set them after create PP-OCR model. int cls_batch_size = 1; int rec_batch_size = 6; // If use TRT backend, the dynamic shape will be set as follow. // We recommend that users set the length and height of the detection model to a multiple of 32. // We also recommend that users set the Trt input shape as follow. det_option.SetTrtInputShape("x", {1, 3, 64,64}, {1, 3, 640, 640}, {1, 3, 960, 960}); cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320}, {cls_batch_size, 3, 48, 1024}); rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320}, {rec_batch_size, 3, 48, 2304}); // Users could save TRT cache file to disk as follow. // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt"); // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt"); // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt"); auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option); auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option); auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option); assert(det_model.Initialized()); assert(cls_model.Initialized()); assert(rec_model.Initialized()); // The classification model is optional, so the PP-OCR can also be connected in series as follows // auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model); auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model); // Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity. // When inference batch size is set to -1, it means that the inference batch size // of the cls and rec models will be the same as the number of boxes detected by the det model. ppocr_v3.SetClsBatchSize(cls_batch_size); ppocr_v3.SetRecBatchSize(rec_batch_size); if(!ppocr_v3.Initialized()){ std::cerr << "Failed to initialize PP-OCR." << std::endl; return; } std::vector models; for (int i = 0; i < thread_num; ++i) { models.emplace_back(std::move(ppocr_v3.Clone())); } std::vector> image_list(thread_num); GetImageList(&image_list, image_file_path, thread_num); std::vector threads; for (int i = 0; i < thread_num; ++i) { threads.emplace_back(Predict, models[i].get(), i, image_list[i]); } for (int i = 0; i < thread_num; ++i) { threads[i].join(); } } int main(int argc, char* argv[]) { if (argc < 7) { std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model " "path/to/rec_model path/to/rec_label_file path/to/image " "run_option thread_num," "e.g ./infer_demo ./ch_PP-OCRv3_det_infer " "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer " "./ppocr_keys_v1.txt ./12.jpg 0 3" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend; 3: run with gpu and use Paddle-TRT; 4: run with kunlunxin." << std::endl; return -1; } fastdeploy::RuntimeOption option; int flag = std::atoi(argv[6]); if (flag == 0) { option.UseCpu(); } else if (flag == 1) { option.UseGpu(); } else if (flag == 2) { option.UseGpu(); option.UseTrtBackend(); } else if (flag == 3) { option.UseGpu(); option.UseTrtBackend(); option.EnablePaddleTrtCollectShape(); option.EnablePaddleToTrt(); } else if (flag == 4) { option.UseKunlunXin(); } std::string det_model_dir = argv[1]; std::string cls_model_dir = argv[2]; std::string rec_model_dir = argv[3]; std::string rec_label_file = argv[4]; std::string image_file_path = argv[5]; int thread_num = std::atoi(argv[7]); InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, image_file_path, option, thread_num); return 0; }