// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/core/fd_type.h" #include #include #include #include namespace fastdeploy { /*! @brief Option object to configure TensorRT backend */ struct TrtBackendOption { /// `max_batch_size`, it's deprecated in TensorRT 8.x size_t max_batch_size = 32; /// `max_workspace_size` for TensorRT size_t max_workspace_size = 1 << 30; /// Enable log while converting onnx model to tensorrt bool enable_log_info = false; /// Enable half precison inference, on some device not support half precision, it will fallback to float32 mode bool enable_fp16 = false; /** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend * * \param[in] tensor_name The name of input for the model which is dynamic shape * \param[in] min The minimal shape for the input tensor * \param[in] opt The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape * \param[in] max The maximum shape for the input tensor, if set as default value, it will keep same with min_shape */ void SetShape(const std::string& tensor_name, const std::vector& min, const std::vector& opt, const std::vector& max) { min_shape[tensor_name].clear(); max_shape[tensor_name].clear(); opt_shape[tensor_name].clear(); min_shape[tensor_name].assign(min.begin(), min.end()); if (opt.size() == 0) { opt_shape[tensor_name].assign(min.begin(), min.end()); } else { opt_shape[tensor_name].assign(opt.begin(), opt.end()); } if (max.size() == 0) { max_shape[tensor_name].assign(min.begin(), min.end()); } else { max_shape[tensor_name].assign(max.begin(), max.end()); } } /// Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again std::string serialize_file = ""; // The below parameters may be removed in next version, please do not // visit or use them directly std::map> max_shape; std::map> min_shape; std::map> opt_shape; bool enable_pinned_memory = false; void* external_stream_ = nullptr; int gpu_id = 0; std::string model_file = ""; // Path of model file std::string params_file = ""; // Path of parameters file, can be empty // format of input model ModelFormat model_format = ModelFormat::AUTOREC; }; } // namespace fastdeploy