English | [简体中文](README_CN.md) # YOLOv6 Quantification Model Python Deployment Example This directory provides examples that `infer.py` fast finishes the deployment of YOLOv6 quantification models on CPU/GPU. ## Prepare the deployment ### FastDeploy Environment Preparation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) ### Prepare the quantification model - 1. Users can directly deploy quantized models provided by FastDeploy. - 2. ii. Or users can use the [One-click auto-compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to automatically conduct quantification model for deployment. ## Example: quantized YOLOv6 model ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/slim/yolov6/python # Download yolov6 quantification model files and test images provided by FastDeploy wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s_qat_model_new.tar tar -xvf yolov6s_qat_model.tar wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # Use ONNX Runtime quantification model on CPU python infer.py --model yolov6s_qat_model --image 000000014439.jpg --device cpu --backend ort # Use TensorRT quantification model on GPU python infer.py --model yolov6s_qat_model --image 000000014439.jpg --device gpu --backend trt # Use Paddle-TensorRT quantification model on GPU python infer.py --model yolov6s_qat_model --image 000000014439.jpg --device gpu --backend pptrt ```