# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, Frontend from .... import c_lib_wrap as C class SCRFD(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=Frontend.ONNX): # 调用基函数进行backend_option的初始化 # 初始化后的option保存在self._runtime_option super(SCRFD, self).__init__(runtime_option) self._model = C.vision.facedet.SCRFD( model_file, params_file, self._runtime_option, model_format) # 通过self.initialized判断整个模型的初始化是否成功 assert self.initialized, "SCRFD initialize failed." def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3): return self._model.predict(input_image, conf_threshold, nms_iou_threshold) # 一些跟SCRFD模型有关的属性封装 # 多数是预处理相关,可通过修改如model.size = [640, 640]改变预处理时resize的大小(前提是模型支持) @property def size(self): return self._model.size @property def padding_value(self): return self._model.padding_value @property def is_no_pad(self): return self._model.is_no_pad @property def is_mini_pad(self): return self._model.is_mini_pad @property def is_scale_up(self): return self._model.is_scale_up @property def stride(self): return self._model.stride @property def downsample_strides(self): return self._model.downsample_strides @property def landmarks_per_face(self): return self._model.landmarks_per_face @property def use_kps(self): return self._model.use_kps @property def max_nms(self): return self._model.max_nms @property def num_anchors(self): return self._model.num_anchors @size.setter def size(self, wh): assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh @padding_value.setter def padding_value(self, value): assert isinstance( value, list), "The value to set `padding_value` must be type of list." self._model.padding_value = value @is_no_pad.setter def is_no_pad(self, value): assert isinstance( value, bool), "The value to set `is_no_pad` must be type of bool." self._model.is_no_pad = value @is_mini_pad.setter def is_mini_pad(self, value): assert isinstance( value, bool), "The value to set `is_mini_pad` must be type of bool." self._model.is_mini_pad = value @is_scale_up.setter def is_scale_up(self, value): assert isinstance( value, bool), "The value to set `is_scale_up` must be type of bool." self._model.is_scale_up = value @stride.setter def stride(self, value): assert isinstance( value, int), "The value to set `stride` must be type of int." self._model.stride = value @downsample_strides.setter def downsample_strides(self, value): assert isinstance( value, list), "The value to set `downsample_strides` must be type of list." self._model.downsample_strides = value @landmarks_per_face.setter def landmarks_per_face(self, value): assert isinstance( value, int), "The value to set `landmarks_per_face` must be type of int." self._model.landmarks_per_face = value @use_kps.setter def use_kps(self, value): assert isinstance( value, bool), "The value to set `use_kps` must be type of bool." self._model.use_kps = value @max_nms.setter def max_nms(self, value): assert isinstance( value, int), "The value to set `max_nms` must be type of int." self._model.max_nms = value @num_anchors.setter def num_anchors(self, value): assert isinstance( value, int), "The value to set `num_anchors` must be type of int." self._model.num_anchors = value