# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UT for air_topp_sampling kernel """ import os import paddle import unittest import numpy as np class Test(unittest.TestCase): def setUp(self): """ Initialize. """ paddle.seed(2024) print(paddle.device.cuda.get_device_properties()) print(paddle.__git_commit__) def dequant_int8_test(self, dynamic_mode=False): """ Check air_topp_sampling output with paddle.tensor.top_p_sampling. """ if dynamic_mode: os.environ["ELLM_DYNAMIC_MODE"] = "1" else: os.environ["ELLM_DYNAMIC_MODE"] = "0" from fastdeploy.model_executor.ops.gpu import dequant_int8 input_tensor = paddle.cast(paddle.ones([128, 128]), "int32") scale_tensor = paddle.cast(paddle.ones([128]), "float32") out = dequant_int8(input_tensor, scale_tensor, "float16") return out def test(self): op_out = self.dequant_int8_test() func_out = self.dequant_int8_test(True) np.testing.assert_allclose( op_out.numpy(), func_out.numpy(), rtol=1e-04, atol=1e-04 ) if __name__ == "__main__": unittest.main()