""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import paddle import paddle.distributed as dist import pdb from glob import glob import os import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument("--model_dir", type=str, required=True) args = parser.parse_args() rank = dist.get_rank() print("rank: ", rank) # merge tpn -> tp1 model_dir = args.model_dir model_path_pp = glob(os.path.join(model_dir, f"pp{rank}")) model_path_pp_tp = [] for p in model_path_pp: model_path_tp = glob(os.path.join(p, "model_state*")) model_path_tp = sorted(model_path_tp) save_merged_pp_path = os.path.join(p, "merged_tp1_state.pdparams") save_merged_pp_dir = os.path.join(model_dir, "merged_tp1_state_split") os.makedirs(save_merged_pp_dir, exist_ok=True) print(p, model_path_tp) state_dicts = [paddle.load(path, return_numpy=True) for path in model_path_tp] state = state_dicts[0] print("merge tp") print("p: ", p) for k, v in state.items(): save_split_path = os.path.join(save_merged_pp_dir, k) state_now = [] for i in range(len(state_dicts)): state_now.append(state_dicts[i][k]) print("k: ", k, ", v.shape: ", v.shape) if "qkv_proj" in k: """not need prmt""" # qkv not prmt ori_q = [s[:, :1024] for s in state_now] ori_k = [s[:, 1024:1152] for s in state_now] ori_v = [s[:, 1152:] for s in state_now] new_q = np.concatenate(ori_q, axis=1) new_k = np.concatenate(ori_k, axis=1) new_v = np.concatenate(ori_v, axis=1) print(new_q.shape) print(new_k.shape) print(new_v.shape) new_w = np.concatenate([new_q, new_k, new_v], axis=1) # new_w = np.concatenate(state_now, axis=1) elif "o_proj" in k or "down_proj" in k: new_w = np.concatenate(state_now, axis=0) elif "embed_tokens" in k: new_w = np.concatenate(state_now, axis=0) elif "up_gate_proj" in k: dim = state_now[0].shape[1] half_ffn1_1 = [s[:, :(dim // 2)] for s in state_now] half_ffn1_2 = [s[:, (dim // 2):] for s in state_now] new_ffn1_1 = np.concatenate(half_ffn1_1, axis=1) new_ffn1_2 = np.concatenate(half_ffn1_2, axis=1) new_w = np.concatenate([new_ffn1_1, new_ffn1_2], axis=1) elif "lm_head" in k or "mtp_linear_proj" in k: new_w = np.concatenate(state_now, axis=1) else: new_w = v print("merged_shape: ", new_w.shape) paddle.save(paddle.to_tensor(new_w), save_split_path) print("merge end")