""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations from dataclasses import dataclass, fields from typing import Any, Optional, Union, List import random @dataclass class SamplingParams: """Sampling parameters for text generation. Overall, we follow the sampling parameters from the OpenAI text completion API (https://platform.openai.com/docs/api-reference/completions/create). In addition, we support beam search, which is not supported by OpenAI. Args: n: Number of output sequences to return for the given prompt. best_of: Number of output sequences that are generated from the prompt. From these `best_of` sequences, the top `n` sequences are returned. `best_of` must be greater than or equal to `n`. By default, `best_of` is set to `n`. Warning, this is only supported in V0. presence_penalty: Float that penalizes new tokens based on whether they appear in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. frequency_penalty: Float that penalizes new tokens based on their frequency in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. repetition_penalty: Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. Values > 1 encourage the model to use new tokens, while values < 1 encourage the model to repeat tokens. temperature: Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random. Zero means greedy sampling. top_p: Float that controls the cumulative probability of the top tokens to consider. Must be in [0, 1]. Set to 1 to consider all tokens. seed: Random seed to use for the generation. stop: list of strings that stop the generation when they are generated. The returned output will not contain the stop strings. stop_token_ids: list of tokens that stop the generation when they are generated. The returned output will contain the stop tokens unless the stop tokens are special tokens. bad_words: list of words that are not allowed to be generated. More precisely, only the last token of a corresponding token sequence is not allowed when the next generated token can complete the sequence. max_tokens: Maximum number of tokens to generate per output sequence. min_tokens: Minimum number of tokens to generate per output sequence before EOS or stop_token_ids can be generated logprobs: Number of log probabilities to return per output token. When set to None, no probability is returned. If set to a non-None value, the result includes the log probabilities of the specified number of most likely tokens, as well as the chosen tokens. Note that the implementation follows the OpenAI API: The API will always return the log probability of the sampled token, so there may be up to `logprobs+1` elements in the response. """ n: int = 1 best_of: Optional[int] = None presence_penalty: float = 0.0 frequency_penalty: float = 0.0 repetition_penalty: float = 1.0 temperature: float = 1.0 top_p: float = 0.7 seed: Optional[int] = None stop: Optional[Union[str, List[str]]] = None stop_token_ids: Optional[Union[List[List[int]], List[int]]] = None max_tokens: Optional[int] = 16 min_tokens: int = 1 logprobs: Optional[int] = None bad_words: Optional[List[str]] = None @classmethod def from_dict(cls, req_dict: dict[str, Any]) -> "SamplingParams": """Create a SamplingParams instance from a dictionary. Args: req_dict: Dictionary containing sampling parameters where keys match the field names of SamplingParams Returns: SamplingParams: A new instance initialized with values from the dictionary """ return cls(**{ field.name: req_dict[field.name] if field.name in req_dict else field.default for field in fields(cls) }) @classmethod def from_optional(cls, n, best_of, presence_penalty, frequency_penalty, repetition_penalty, temperature, top_p, seed=None, stop=None, stop_token_ids=None, max_tokens=None, min_tokens=1, logprobs=None, bad_words=None ) -> "SamplingParams": """Create a SamplingParams instance from optional arguments with default fallbacks. Args: n: Number of output sequences (default: 1) best_of: Number of sequences to generate before selecting best (default: None) presence_penalty: Penalty for new tokens (default: 0.0) frequency_penalty: Penalty based on token frequency (default: 0.0) repetition_penalty: Penalty for repeated tokens (default: 1.0) temperature: Sampling temperature (default: 1.0) top_p: Nucleus sampling probability (default: 0.7) seed: Random seed (default: random) stop: Stop sequences (default: None) stop_token_ids: Stop token IDs (default: None) max_tokens: Maximum tokens to generate (default: 8192) min_tokens: Minimum tokens before stopping (default: 1) logprobs: Number of logprobs to return (default: None) bad_words: List of banned words (default: None) Returns: SamplingParams: A new instance with provided or default values """ return cls( n=1 if n is None else n, best_of=best_of, presence_penalty=presence_penalty if presence_penalty is not None else 0.0, frequency_penalty=frequency_penalty if frequency_penalty is not None else 0.0, repetition_penalty=repetition_penalty if repetition_penalty is not None else 1.0, temperature=temperature if temperature is not None else 1.0, top_p=top_p if top_p is not None else 0.7, seed=seed, stop=stop, stop_token_ids=stop_token_ids, max_tokens=max_tokens if max_tokens is not None else 8192, min_tokens=min_tokens, logprobs=logprobs, bad_words=bad_words ) def __post_init__(self): """Initialize sampling parameters after instance creation. Sets a random seed if none provided and validates all parameters. """ if self.seed is None: self.seed = random.randint(0, 922337203685477580) self._verify_args() def _verify_args(self) -> None: """Validate all sampling parameters. Raises: ValueError: If any parameter is outside its valid range or of incorrect type """ if not isinstance(self.n, int): raise ValueError(f"n must be an int, but is of type {type(self.n)}") if self.n < 1: raise ValueError(f"n must be at least 1, got {self.n}.") if not -2.0 <= self.presence_penalty <= 2.0: raise ValueError("presence_penalty must be in [-2, 2], got " f"{self.presence_penalty}.") if not -2.0 <= self.frequency_penalty <= 2.0: raise ValueError("frequency_penalty must be in [-2, 2], got " f"{self.frequency_penalty}.") if self.repetition_penalty <= 0.0: raise ValueError( "repetition_penalty must be greater than zero, got " f"{self.repetition_penalty}.") if self.temperature < 0.0: raise ValueError( f"temperature must be non-negative, got {self.temperature}.") if not 0.0 <= self.top_p <= 1.0: raise ValueError(f"top_p must be in [0, 1], got {self.top_p}.") if self.max_tokens is not None and self.max_tokens < 1: raise ValueError( f"max_tokens must be at least 1, got {self.max_tokens}.") if self.min_tokens < 0: raise ValueError(f"min_tokens must be greater than or equal to 0, " f"got {self.min_tokens}.") if self.max_tokens is not None and self.min_tokens > self.max_tokens: raise ValueError( f"min_tokens must be less than or equal to " f"max_tokens={self.max_tokens}, got {self.min_tokens}.") if self.logprobs is not None and self.logprobs < 0: raise ValueError( f"logprobs must be non-negative, got {self.logprobs}.") if not 0 <= self.seed <= 922337203685477580: raise ValueError("seed must be in [0, 922337203685477580], got " f"{self.seed}.") def update_from_tokenizer(self, tokenizer): """Update sampling parameters based on tokenizer configuration. Note: Currently a placeholder for future implementation of: - Stop tokens handling - Bad words filtering Args: tokenizer: The tokenizer instance to use for configuration """ # TODO: Implement stop tokens and bad words support pass @dataclass class BeamSearchParams: """Parameters for beam search text generation. Args: beam_width: Number of beams to maintain during search max_tokens: Maximum number of tokens to generate ignore_eos: Whether to ignore EOS tokens (default: False) temperature: Sampling temperature (0 means greedy, default: 0.0) length_penalty: Penalty applied to length (1.0 means no penalty, default: 1.0) include_stop_str_in_output: Whether to include stop strings in output (default: False) """ beam_width: int max_tokens: int ignore_eos: bool = False temperature: float = 0.0 length_penalty: float = 1.0 include_stop_str_in_output: bool = False