# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class CaddnPreprocessor: def __init__(self, config_file): """Create a preprocessor for Caddn """ self._preprocessor = C.vision.perception.CaddnPreprocessor(config_file) def run(self, input_ims, cam_data, lidar_data): """Preprocess input images for Caddn :param: input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor """ return self._preprocessor.run(input_ims, cam_data, lidar_data) class CaddnPostprocessor: def __init__(self): """Create a postprocessor for Caddn """ self._postprocessor = C.vision.perception.CaddnPostprocessor() def run(self, runtime_results): """Postprocess the runtime results for Caddn :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :return: list of PerceptionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results) class Caddn(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a Caddn model exported by Caddn. :param model_file: (str)Path of model file, e.g ./Caddn.pdmodel :param params_file: (str)Path of parameters file, e.g ./Caddn.pdiparams :param config_file: (str)Path of config file, e.g ./infer_cfg.yaml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(Caddn, self).__init__(runtime_option) self._model = C.vision.perception.Caddn( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "Caddn initialize failed." def predict(self, input_image, cam_data, lidar_data): """Detect an input image :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param: cam_data: (list)The input camera data :param: lidar_data: (list)The input lidar data :return: PerceptionResult """ return self._model.predict(input_image, cam_data, lidar_data) def batch_predict(self, images, cam_data, lidar_data): """Classify a batch of input image :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :param: cam_data: (list)The input camera data :param: lidar_data: (list)The input lidar data :return list of PerceptionResult """ return self._model.batch_predict(images, cam_data, lidar_data) @property def preprocessor(self): """Get CaddnPreprocessor object of the loaded model :return CaddnPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get CaddnPostprocessor object of the loaded model :return CaddnPostprocessor """ return self._model.postprocessor