""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import copy import multiprocessing import os import re import signal import subprocess import sys import threading import time import traceback import uuid import weakref from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Tuple import numpy as np import paddle import zmq from opentelemetry import trace from tqdm import tqdm from fastdeploy.engine.args_utils import EngineArgs from fastdeploy.engine.expert_service import start_expert_service from fastdeploy.engine.request import Request, RequestOutput from fastdeploy.engine.resource_manager import ResourceManager from fastdeploy.engine.sched.resource_manager_v1 import ResourceManagerV1 from fastdeploy.input.preprocess import InputPreprocessor from fastdeploy.inter_communicator import ( EngineCacheQueue, EngineWorkerQueue, IPCSignal, ZmqClient, ) from fastdeploy.metrics.metrics import main_process_metrics from fastdeploy.metrics.trace_util import start_span, start_span_request from fastdeploy.model_executor.guided_decoding import schema_checker from fastdeploy.output.token_processor import TokenProcessor, WarmUpTokenProcessor from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector from fastdeploy.utils import EngineError, console_logger, envs, llm_logger class LLMEngine: """ Engine class responsible for managing the Large Language Model (LLM) operations. Attributes: cfg (Config): Configuration object containing all the parameters. cached_generated_tokens (queue.Queue): Queue to store generated tokens. scheduler (LocalScheduler or GlobalScheduler): Scheduling tasks. input_processor (InputPreprocessor): Preprocessor for input data. resource_manager (ResourceManager): Manager for resource allocation. token_processor (TokenProcessor): Processor for token generation. engine_worker_queue (EngineWorkerQueue): Queue for communication between engine and workers. is_started (bool): Flag indicating if the engine has started. do_profile (int): Flag indicating if profiling is enabled. """ @classmethod def from_engine_args(cls, engine_args: EngineArgs): """ Creates an LLM engine from the provided engine arguments. Args: engine_args (EngineArgs): Engine arguments object. Returns: LLMEngine: Instance of the LLMEngine class. """ # Create the engine configs. config = engine_args.create_engine_config() # Create the LLMEngine. return cls(cfg=config) def __init__(self, cfg): """ Initializes the LLMEngine with the provided configuration. Args: cfg (Config): Config object containing all the configuration parameters. """ self.cfg = cfg self.running = True self.scheduler = cfg.scheduler_config.scheduler() self.input_processor = InputPreprocessor( cfg.tokenizer, cfg.reasoning_parser, cfg.limit_mm_per_prompt, cfg.mm_processor_kwargs, cfg.enable_mm, cfg.tool_parser, ) self.start_queue_service() if envs.ENABLE_V1_KVCACHE_SCHEDULER: self.resource_manager = ResourceManagerV1( cfg.max_num_seqs, cfg, cfg.tensor_parallel_size, cfg.splitwise_role ) if cfg.splitwise_role != "mixed": raise NotImplementedError( "Currently ENABLE_V1_KVCACHE_SCHEDULER=1 only supported in mixed sampling now." ) else: self.resource_manager = ResourceManager( cfg.max_num_seqs, cfg, cfg.tensor_parallel_size, cfg.splitwise_role ) os.environ["INFERENCE_MSG_QUEUE_ID"] = str(self.cfg.engine_worker_queue_port) self.split_connector = SplitwiseConnector(cfg, self.scheduler, self.engine_worker_queue, self.resource_manager) self.token_processor = TokenProcessor( cfg=self.cfg, cached_generated_tokens=self.scheduler, engine_worker_queue=self.engine_worker_queue, split_connector=self.split_connector, ) self.token_processor.set_resource_manager(self.resource_manager) self.is_started = False self.waiting_requests = [] if self.cfg.cache_config.num_gpu_blocks_override is None: self.do_profile = 1 else: self.do_profile = 0 self.partial_chunked_tokens = [0] * (self.cfg.max_num_partial_prefills + 1) for idx in range(1, self.cfg.max_num_partial_prefills + 1): self.partial_chunked_tokens[idx] = ( (self.cfg.max_num_batched_tokens // idx) // self.cfg.cache_config.block_size * self.cfg.cache_config.block_size ) self.partial_chunked_tokens[idx] = max(1, self.partial_chunked_tokens[idx]) self._finalizer = weakref.finalize(self, self._exit_sub_services) self.guided_decoding_checker = None if self.cfg.guided_decoding_backend != "off": self.guided_decoding_checker = schema_checker( self.cfg.guided_decoding_backend, disable_any_whitespace=self.cfg.disable_any_whitespace, ) def start(self, api_server_pid=None): """ Initializes the engine and starts its sub-services. If `api_server_pid` is defined, will launch a thread to keep getting request from zmq_server. """ assert not self.is_started, "The engine is already started." start_time = time.time() self.api_server_pid = api_server_pid self.engine_pid = os.getpid() self.ipc_signal_suffix = self.engine_pid if self.api_server_pid is None else self.api_server_pid self._init_worker_signals() self.data_processor = self.input_processor.create_processor() if api_server_pid is not None: self.zmq_server = ZmqClient(name=api_server_pid, mode=zmq.PULL) self.zmq_server.start_server() self.zmq_server.create_router() time.sleep(3) if self.do_profile == 0 and ( self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed" ): device_ids = self.cfg.device_ids.split(",") self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager( cache_config=self.cfg.cache_config, tensor_parallel_size=self.cfg.tensor_parallel_size, device_ids=device_ids, pod_ip=self.cfg.master_ip, engine_worker_queue_port=self.cfg.engine_worker_queue_port, pid_suffix=self.ipc_signal_suffix, ) self.worker_proc = self._start_worker_service() console_logger.info("Waiting worker processes ready...") time.sleep(5) self.worker_init_status = dict() result_container = {} def check_worker_initialize_status_func(res: dict): res["worker_is_alive"] = True if not self.check_worker_initialize_status(): console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.") res["worker_is_alive"] = False self.check_worker_initialize_status_func_thread = threading.Thread( target=check_worker_initialize_status_func, args=(result_container,), daemon=True ) self.check_worker_initialize_status_func_thread.start() # Wait model loading while self.loaded_model_signal.value[0] == 0: # Make sure worker process is alive if not self.check_worker_initialize_status_func_thread.is_alive(): return False time.sleep(1) if self.do_profile: self._stop_profile() # Launch components: scheduler, cache_manager, expert_service et.al. self.launch_components() if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed": self.launched_cache_manager_signal.value[0] = 1 # Worker launched self.check_worker_initialize_status_func_thread.join() if not result_container["worker_is_alive"]: console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.") return False # Start warmup if enabled if self.cfg.use_warmup: console_logger.info("Starting warmup") self._set_warmup_token_processor() self.warmup() self._del_warmup_token_processor() console_logger.info("Warmup finished") console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.") return True def _zmq_send_generated_tokens(self): """ Recieve output for zmq """ assert self.api_server_pid is not None while self.running: try: results = self.scheduler.get_results() if len(results) == 0: time.sleep(0.005) continue for request_id, contents in results.items(): self.zmq_server.send_multipart(request_id, contents) except Exception as e: llm_logger.error(f"Unexcepted error happend: {e}, {traceback.format_exc()!s}") def _get_generated_result(self): """ Get result from scheduler, this function is called by generate() which is only used in offline inference. """ return self.scheduler.get_results() def _insert_task_to_worker(self): """ Insert task to engine thread, monitor scheduler request queue. if the engine has resource, insert task to engine """ current_id = -1 while self.running: try: if self.resource_manager.available_batch() == 0: time.sleep(0.001) continue if self.engine_worker_queue.num_tasks() > 0: time.sleep(0.001) continue if self.exist_prefill_task_signal.value[0] > 0: if self.cfg.splitwise_role == "mixed" or self.split_connector.has_splitwise_tasks(): time.sleep(0.005) continue if self.engine_worker_queue.num_cache_infos() > 0: time.sleep(0.001) continue if len(self.split_connector.current_request_ids) > 0: time.sleep(0.001) continue num_prefill_batch = min( int(self.resource_manager.available_batch()), self.cfg.max_prefill_batch, ) self.resource_manager.check_and_free_block_tables() tasks = self.scheduler.get_requests( available_blocks=self.resource_manager.available_block_num(), block_size=self.cfg.cache_config.block_size, reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num, max_num_batched_tokens=self.cfg.max_num_batched_tokens, batch=num_prefill_batch, ) if len(tasks) == 0: time.sleep(0.001) continue current_id = (current_id + 1) % 100003 if self.cfg.splitwise_role != "mixed": llm_logger.info("Inserting splitwise tasks") self.split_connector.send_splitwise_tasks(tasks, current_id) self.insert_tasks(tasks, current_id) main_process_metrics.num_requests_waiting.dec(len(tasks)) main_process_metrics.num_requests_running.inc(len(tasks)) except Exception as e: err_msg = f"Error happend while insert task to engine: {e}, {traceback.format_exc()!s}." llm_logger.error(err_msg) def _scheduler_task_to_worker_v1(self): """ Insert tasks to worker with scheduler v1 (ENABLE_V1_KVCACHE_SCHEDULER=1). """ get_request_pool = ThreadPoolExecutor(max_workers=1) is_fetching = False def _fetch_request(): nonlocal is_fetching is_fetching = True num_prefill_batch = min( int(self.resource_manager.available_batch()), self.cfg.max_prefill_batch, ) self.resource_manager.check_and_free_block_tables() tasks = self.scheduler.get_requests( available_blocks=self.resource_manager.available_block_num(), block_size=self.cfg.cache_config.block_size, reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num, max_num_batched_tokens=self.cfg.max_model_len, batch=num_prefill_batch, ) # Fetch requests and add them to the scheduling queue for task in tasks: self.resource_manager.add_request(task) is_fetching = False while self.running: try: if self.engine_worker_queue.num_tasks() > 0: time.sleep(0.001) continue if ( len(self.resource_manager.waiting) == 0 and (not is_fetching) and self.exist_prefill_task_signal.value[0] == 0 ): get_request_pool.submit(_fetch_request) # 2. Schedule requests tasks = self.resource_manager.schedule() # 3. Send to engine if tasks: self.resource_manager.get_real_bsz() self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz)) else: time.sleep(0.005) except Exception as e: err_msg = "Error happend while insert task to engine: {}, {}.".format(e, str(traceback.format_exc())) llm_logger.error(err_msg) def _insert_zmq_task_to_scheduler(self): if self.api_server_pid is None: return added_requests: Dict[str, int] = dict() while self.running: try: block = True if len(added_requests) == 0 else False if not self.cfg.enable_mm: err, data = self.zmq_server.receive_json_once(block) else: err, data = self.zmq_server.receive_pyobj_once(block) if err is not None: llm_logger.error("Engine stops inserting zmq task into scheduler, err:{err}") break request, insert_task = None, [] results: List[Tuple[str, Optional[str]]] = list() if data: request = Request.from_dict(data) start_span("ENQUEUE_ZMQ", data, trace.SpanKind.PRODUCER) llm_logger.debug(f"Receive request: {request}") err_msg = None if self.guided_decoding_checker is not None: request, err_msg = self.guided_decoding_checker.schema_format(request) if err_msg is not None: llm_logger.error(err_msg) results.append((request.request_id, err_msg)) else: insert_task.append(request) response = self.scheduler.put_requests(insert_task) results.extend(response) if request: if request.request_id not in added_requests: added_requests[request.request_id] = 0 added_requests[request.request_id] += 1 for request_id, failed in results: added_requests[request_id] -= 1 if added_requests[request_id] == 0: added_requests.pop(request_id) if failed is None: main_process_metrics.num_requests_waiting.inc(1) continue error_result = RequestOutput( request_id=request_id, finished=True, error_code=500, error_msg=failed, ) # Since the request is not in scheduler # Send result by zmq directly self.zmq_server.send_multipart(request_id, error_result) except Exception as e: llm_logger.error( f"Error happend while receving new request from zmq, details={e}, " f"traceback={traceback.format_exc()}" ) def add_requests(self, task, sampling_params=None, **kwargs): """ Add a new request to the queue. Args: task: Request A dictionary representing the request. sampling_params: A dictionary representing the sampling parameters. Returns: None """ # TODO 输入输出长度确认 request = Request.from_dict(task) llm_logger.info(f"Receive request {request}") if sampling_params is not None: sampling_params.update_from_tokenizer(self.data_processor.tokenizer) request.sampling_params = sampling_params request.preprocess_start_time = time.time() request = self.data_processor.process_request(request, self.cfg.max_model_len, **kwargs) request.prompt_token_ids_len = len(request.prompt_token_ids) request.need_prefill_tokens = request.prompt_token_ids_len input_ids_len = request.prompt_token_ids_len request.set( "max_tokens", min( self.cfg.max_model_len - input_ids_len, request.get("max_tokens"), ), ) if request.get("reasoning_max_tokens") is None: default_reasoning_max_tokens = max(int(request.get("max_tokens") * 0.8), 1) request.set("reasoning_max_tokens", default_reasoning_max_tokens) min_tokens = request.get("min_tokens") if input_ids_len + min_tokens >= self.cfg.max_model_len: error_msg = ( f"Input text is too long, length of prompt token({input_ids_len}) " f"+ min_dec_len ({min_tokens}) >= max_model_len " ) llm_logger.error(error_msg) raise EngineError(error_msg, error_code=400) if input_ids_len > self.cfg.max_model_len: error_msg = ( f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.cfg.max_model_len})." ) llm_logger.error(error_msg) raise EngineError(error_msg, error_code=400) if request.get("stop_seqs_len") is not None: stop_seqs_len = request.get("stop_seqs_len") max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM) if len(stop_seqs_len) > max_stop_seqs_num: error_msg = ( f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})." "Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`" ) llm_logger.error(error_msg) raise EngineError(error_msg, error_code=400) stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN) for single_stop_seq_len in stop_seqs_len: if single_stop_seq_len > stop_seqs_max_len: error_msg = ( f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})." "Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`" ) llm_logger.error(error_msg) raise EngineError(error_msg, error_code=400) if self.guided_decoding_checker is not None: request, err_msg = self.guided_decoding_checker.schema_format(request) if err_msg is not None: llm_logger.error(err_msg) raise EngineError(err_msg, error_code=400) request.preprocess_end_time = time.time() self.scheduler.put_requests([request]) llm_logger.info(f"Cache task with request_id ({request.get('request_id')})") llm_logger.debug(f"cache task: {request}") def warmup(self): """ construct test tasks and avoid out of memory problem in the worker process """ # get eos_token_id pass def split_mode_get_tasks(self): """ Split mode get tasks """ def receiver_loop(): while self.running: try: processed_indices = [] for idx, task in enumerate(self.waiting_requests): if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len): self.insert_tasks([task]) llm_logger.info(f"Resource available, processing task {task.request_id}") processed_indices.append(idx) else: llm_logger.debug(f"Still waiting for resources {task.request_id}") break for idx in sorted(processed_indices, reverse=True): self.waiting_requests.pop(idx) if not self.engine_worker_queue.disaggregate_queue_empty(): items = self.engine_worker_queue.get_disaggregated_tasks() for item in items: role = item[0] tasks = item[1] if role == "prefill": for task in tasks: task.max_tokens = task.min_tokens = 2 self.insert_tasks(tasks) elif role == "decode": if hasattr(tasks[0], "finished"): if not isinstance(tasks, list): tasks = [tasks] for task in tasks: task.finished = False self.insert_tasks(tasks, allocated=True) if self.cfg.innode_prefill_ports is not None: self.scheduler.put_results(tasks) else: if len(self.waiting_requests): llm_logger.info(f"Waiting for resource for task {tasks[0].request_id}") self.waiting_requests.extend(tasks) else: new_waiting = [] for task in tasks: if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len): self.insert_tasks([task]) else: new_waiting.append(task) if new_waiting: self.waiting_requests.extend(new_waiting) llm_logger.info(f"Added {len(new_waiting)} tasks to waiting queue") else: time.sleep(0.001) except Exception as e: llm_logger.error(f"Error in main loop: {e}") time.sleep(0.1) threading.Thread(target=receiver_loop, daemon=True).start() def update_requests_chunk_size(self, requests): """ update each request's chunk size info """ def update_tokens(idx, chunk_size, update_chunk=False): nonlocal remain_batched_tokens, chunk_request_num if update_chunk: requests_chunk[idx][-1] += chunk_size else: requests_chunk[idx].append(chunk_size) remain_batched_tokens -= chunk_size current_request_size[idx] -= chunk_size if current_request_size[idx] <= 0: chunk_request_num -= 1 if not self.cfg.cache_config.enable_chunked_prefill or len(requests) == 0: return current_request_size = [request.prompt_token_ids_len for request in requests] requests_chunk = [[] for _ in range(len(requests))] chunk_request_num = len(current_request_size) while chunk_request_num >= 1: remain_batched_tokens = self.cfg.max_num_batched_tokens for idx in range(len(current_request_size)): if current_request_size[idx] <= 0: continue chunk_size = min( current_request_size[idx], self.partial_chunked_tokens[chunk_request_num], ) update_tokens(idx, chunk_size) while remain_batched_tokens >= self.cfg.cache_config.block_size: # 当前 max_num_batched_tokens 还有剩余时,优先分配给较短的请求 waiting_requests = [input_lens for input_lens in current_request_size if input_lens > 0] if len(waiting_requests) == 0: break available_tokens = ( remain_batched_tokens // self.cfg.cache_config.block_size * self.cfg.cache_config.block_size ) append_idx = current_request_size.index(min(waiting_requests)) chunk_size = min( current_request_size[append_idx], self.partial_chunked_tokens[chunk_request_num], available_tokens, ) update_tokens(append_idx, chunk_size, update_chunk=True) for idx in range(len(requests)): requests[idx].set("prefill_chunk_info", requests_chunk[idx]) def update_mm_requests_chunk_size(self, requests): """ update each multimodal request's chunk size info """ if not self.cfg.cache_config.enable_chunked_prefill or len(requests) == 0: return for request in requests: inputs = request.multimodal_inputs # 兼容没有图片和视频的情况 if inputs["images"] is None: inputs["image_type_ids"] = np.array([], dtype="int32") inputs["grid_thw"] = np.array([], dtype="int64") inputs["images"] = np.array([], dtype="uint8") input_ids = paddle.to_tensor(inputs["input_ids"], dtype="int64") image_type_ids = paddle.to_tensor(inputs["image_type_ids"], dtype="int32") image_mask = input_ids == self.data_processor.image_patch_id image_token_sum = paddle.full(shape=[len(input_ids) + 1], fill_value=0, dtype="int32") image_token_sum[1:] = paddle.cumsum(image_mask.cast("int32")) grid_thw = [] for one in inputs["grid_thw"]: if one[0] == 1: grid_thw.append(one) else: grid_thw.extend([[2, one[1], one[2]]] * (one[0] // 2)) grid_thw = paddle.to_tensor(grid_thw, dtype="int64") from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse chunk_image_num, chunk_seq_len = get_mm_split_fuse( input_ids, image_type_ids, image_token_sum, grid_thw, self.data_processor.image_patch_id, len(grid_thw), 0, len(input_ids), 0, self.partial_chunked_tokens[1], 2048, ) grid_thw = grid_thw.numpy().reshape([-1, 3]) num_chunks = len(chunk_image_num) chunks_info = [] input_ids_st, image_type_ids_st, grid_thw_st, patch_st = 0, 0, 0, 0 for idx in range(num_chunks): chunk_input_ids = inputs["input_ids"][input_ids_st : input_ids_st + chunk_seq_len[idx]] chunk_token_type_ids = inputs["token_type_ids"][input_ids_st : input_ids_st + chunk_seq_len[idx]] actual_image_num = np.sum(grid_thw[grid_thw_st : grid_thw_st + chunk_image_num[idx], 0]) chunk_image_type_ids = inputs["image_type_ids"][ image_type_ids_st : image_type_ids_st + actual_image_num ] chunk_grid_thw = grid_thw[grid_thw_st : grid_thw_st + chunk_image_num[idx]] chunk_patch_num = np.sum(np.prod(chunk_grid_thw, axis=1)) chunk_images = inputs["images"][patch_st : patch_st + chunk_patch_num] chunks_info.append( { "input_ids": chunk_input_ids, "token_type_ids": chunk_token_type_ids, "image_type_ids": (chunk_image_type_ids if chunk_image_type_ids.shape[0] else None), "grid_thw": (chunk_grid_thw if chunk_grid_thw.shape[0] else None), "images": (chunk_images if chunk_images.shape[0] else None), "position_ids": None, } ) input_ids_st += chunk_seq_len[idx] image_type_ids_st += actual_image_num grid_thw_st += chunk_image_num[idx] patch_st += chunk_patch_num request.set("prefill_chunk_info", chunks_info) def insert_tasks(self, tasks, current_id=-1, allocated=False): """ Insert tasks to engine. """ # TODO 返回至 scheduler if allocated: current_tasks = [] for task in tasks: cur_task_idx = self.resource_manager.req_dict[task.request_id] del self.resource_manager.req_dict[task.request_id] cur_task = self.resource_manager.tasks_list[cur_task_idx] cur_task.prompt_token_ids[0] = task.outputs.token_ids[0] if self.cfg.speculative_config.method in ["mtp"] and self.cfg.splitwise_role == "decode": cur_task.draft_token_ids = copy.deepcopy(task.outputs.draft_token_ids) if task.error_code != 200: self.resource_manager.stop_flags[cur_task_idx] = True self.resource_manager.tasks_list[cur_task_idx] = None self.resource_manager._recycle_block_tables(cur_task) if task.request_id in self.token_processor.tokens_counter: del self.token_processor.tokens_counter[task.request_id] self.scheduler.put_results([task]) llm_logger.warning( f"{task.request_id} prefill failed with msg:{task.error_msg}, recycle resource." ) continue self.token_processor.tokens_counter[task.request_id] = 1 current_tasks.append(cur_task) self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz)) return True for task in tasks: start_span_request("DEQUEUE", task, trace.SpanKind.CONSUMER) if task.sampling_params.bad_words is not None: task.sampling_params.update_from_tokenizer(self.data_processor.tokenizer) self.resource_manager.check_and_free_block_tables() if not isinstance(tasks, list): tasks = [tasks] for item in tasks: item.schedule_start_time = time.time() available_batch = np.sum(self.resource_manager.stop_flags) if len(tasks) > available_batch: llm_logger.error(f"Inserting batch:{len(tasks)} exceeds the available batch:{available_batch}.") llm_logger.error("The exceeded part will be ignored!") tasks = tasks[:available_batch] req_ids = [t.request_id for t in tasks] tasks = self.resource_manager.allocate_resources_for_new_tasks(tasks) if not tasks: error_msg = f"The request required resources is exceed the limit, request id={req_ids}." llm_logger.error(error_msg) raise EngineError(error_msg, error_code=500) return False self.token_processor.number_of_tasks += len(tasks) is_decode = False is_prefill = False for i in range(len(tasks)): if tasks[i].disaggregate_info is not None: if tasks[i].disaggregate_info["role"] == "decode": is_decode = True else: is_prefill = True self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len self.split_connector.send_cache_infos(tasks, current_id) if not is_decode: llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}") for task in tasks: task.inference_start_time = time.time() if not is_prefill: if not self.cfg.enable_mm: self.update_requests_chunk_size(tasks) else: self.update_mm_requests_chunk_size(tasks) self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz)) if is_prefill and self.cfg.scheduler_config.name != "splitwise": self.engine_worker_queue.available_prefill_instances.put(1) return True def task_is_finished(self, index): """ judge if the task is finished """ assert index < len(self.resource_manager.stop_flags) return self.resource_manager.stop_flags[index] def all_tasks_finished(self): """ judge if all tasks are finished """ return np.sum(self.resource_manager.stop_flags) == len(self.resource_manager.stop_flags) def _set_warmup_token_processor(self): """ set token_processor for warmup """ self.token_processor_backup = self.token_processor self.token_processor = WarmUpTokenProcessor(self.cfg) self.token_processor.set_resource_manager(self.resource_manager) self.token_processor.tasks_queue = self.engine_worker_queue # start TokenProcessor thread self.token_processor.run() def _del_warmup_token_processor(self): """ delete token_processor for warmup """ self.token_processor.stop() del self.token_processor # reset token_processor self.token_processor = self.token_processor_backup del self.token_processor_backup def _worker_processes_ready(self): """ judge if all worker processes are ready """ if np.sum(self.worker_ready_signal.value) == self.cfg.worker_num_per_node: return True return False def _init_worker_signals(self): """ Initialize shared memory to indicate engine status """ # worker_ready_signatensor_parallel_size worker_ready_signal_data = np.zeros(shape=[self.cfg.worker_num_per_node], dtype=np.int32) self.worker_ready_signal = IPCSignal( name="worker_ready_signal", array=worker_ready_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # exist_task_signal: Used by each worker process to detect whether there is a new task to be processed exist_task_signal_data = np.zeros([self.cfg.parallel_config.data_parallel_size], dtype=np.int32) self.exist_task_signal = IPCSignal( name="exist_task_signal", array=exist_task_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # exist_swapped_task_signal: Used by the engine to detect whether there is a swapped task in the worker exist_swapped_task_signal_data = np.zeros([self.cfg.parallel_config.data_parallel_size], dtype=np.int32) self.exist_swapped_task_signal = IPCSignal( name="exist_swapped_task_signal", array=exist_swapped_task_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # exist_prefill_task_signal: Used by each worker process to detect whether to prefill exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32) self.exist_prefill_task_signal = IPCSignal( name="exist_prefill_task_signal", array=exist_prefill_task_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # launched_cache_manager_signal: Used to detect whether the engine has started cache_manager if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed": launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32) self.launched_cache_manager_signal = IPCSignal( name="launched_cache_manager_signal", array=launched_cache_manager_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # launched_expert_service_signal: Used to sense whether each expet_servic is started successfully if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1: launched_expert_service_signal_data = np.zeros( shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32 ) self.launched_expert_service_signal = IPCSignal( name="launched_expert_service_signal", array=launched_expert_service_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # loaded_model_signal: Used to detect whether each worker has completed model loading loaded_model_signal_data = np.zeros([1], dtype=np.int32) self.loaded_model_signal = IPCSignal( name="loaded_model_signal", array=loaded_model_signal_data, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) # worker_live_signal: Used by the engine to detect whether each worker process is alive and record the time of each step worker_healthy_live_recorded_time_array = np.zeros(shape=[self.cfg.worker_num_per_node], dtype=np.int32) self.worker_healthy_live_signal = IPCSignal( name="worker_healthy_live_signal", array=worker_healthy_live_recorded_time_array, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) if self.do_profile: if paddle.is_compiled_with_custom_device("iluvatar_gpu"): get_profile_block_num = np.zeros([self.cfg.worker_num_per_node], dtype=np.int32) else: get_profile_block_num = np.zeros([1], dtype=np.int32) self.get_profile_block_num_signal = IPCSignal( name="get_profile_block_num", array=get_profile_block_num, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) model_weights_status = np.zeros([1], dtype=np.int32) self.model_weights_status_signal = IPCSignal( name="model_weights_status", array=model_weights_status, dtype=np.int32, suffix=self.ipc_signal_suffix, create=True, ) def _exit_sub_services(self): """ exit sub services """ self.running = False if hasattr(self, "cache_manager_processes"): self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear() self.resource_manager.cache_manager.cache_ready_signal.clear() for p in self.cache_manager_processes: llm_logger.info(f"Killing cache manager process {p.pid}") try: os.killpg(p.pid, signal.SIGTERM) except Exception as e: print(f"Error extracting file: {e}") self.worker_ready_signal.clear() self.exist_task_signal.clear() self.exist_swapped_task_signal.clear() self.worker_healthy_live_signal.clear() self.exist_prefill_task_signal.clear() if hasattr(self, "get_profile_block_num_signal"): self.get_profile_block_num_signal.clear() self.model_weights_status_signal.clear() if hasattr(self, "worker_proc") and self.worker_proc is not None: try: os.killpg(self.worker_proc.pid, signal.SIGTERM) except Exception as e: print(f"Error extracting sub services: {e}") self.engine_worker_queue.cleanup() if hasattr(self, "zmq_server") and self.zmq_server is not None: self.zmq_server.close() if hasattr(self, "dp_processed"): for p in self.dp_processed: p.join() def _setting_environ_variables(self): """ 配置环境变量 """ variables = { "ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY": 0, "LOAD_STATE_DICT_THREAD_NUM": len(self.cfg.device_ids.split(",")), "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION": "python", "FLAGS_use_append_attn": 1, "NCCL_ALGO": "Ring", "FLAGS_max_partition_size": int(os.getenv("FLAGS_max_partition_size", 32768)), "FLAGS_hardamard_moe_block_size": int(os.getenv("FLAGS_hardamard_moe_block_size", 128)), "FLAGS_hardamard_use_diagonal_block_matrix": int( os.getenv("FLAGS_hardamard_use_diagonal_block_matrix", 0) ), } # environment variables needed by Dy2St variables.update( { "SOT_LOG_LEVEL": os.getenv("SOT_LOG_LEVEL", default="0"), "SOT_UNSAFE_CACHE_FASTPATH": os.getenv("SOT_UNSAFE_CACHE_FASTPATH", default="1"), "SOT_ENABLE_0_SIZE_FALLBACK": os.getenv("SOT_ENABLE_0_SIZE_FALLBACK", default="0"), "SOT_SPECIALIZED_DIM_NUMBERS": os.getenv("SOT_SPECIALIZED_DIM_NUMBERS", default="no"), "FLAGS_specialize_device_in_dy2st": os.getenv("FLAGS_specialize_device_in_dy2st", default="1"), "FLAGS_enable_async_fast_gc": os.getenv("FLAGS_enable_async_fast_gc", default="0"), "FLAGS_pir_interpreter_record_stream_for_gc_cache": os.getenv( "FLAGS_pir_interpreter_record_stream_for_gc_cache", default="1" ), "FLAGS_parameters_persistent_mode_in_dy2st": os.getenv( "FLAGS_parameters_persistent_mode_in_dy2st", default="1" ), } ) if self.cfg.splitwise_role != "mixed": variables["FLAGS_use_pd_disaggregation"] = 1 # TODO dynamic load environment variable if self.cfg.splitwise_role == "prefill": variables["FLAGS_fmt_write_cache_completed_signal"] = 1 if self.cfg.enable_mm: variables["FLAGS_max_partition_size"] = 1024 command_prefix = "" for k, v in variables.items(): command_prefix += f"{k}={v} " return command_prefix def _start_worker_service(self): """ start gpu worker service """ log_dir = os.getenv("FD_LOG_DIR", default="log") command_prefix = self._setting_environ_variables() current_file_path = os.path.abspath(__file__) current_dir_path = os.path.split(current_file_path)[0] # TODO uncache_worker_stdout = "" if os.getenv("UNCACHE_WORKER_STDOUT", "0") == 1 else "-u" pd_cmd = f"{command_prefix} {sys.executable} {uncache_worker_stdout} -m paddle.distributed.launch" pd_cmd = pd_cmd + f" --log_dir {log_dir}" worker_path = "../worker/worker_process.py" py_script = os.path.join(current_dir_path, worker_path) ori_vocab_size = ( len(self.data_processor.tokenizer.sp_model) if hasattr(self.data_processor.tokenizer, "sp_model") else len(self.data_processor.tokenizer.vocab) ) arguments = ( f" --devices {self.cfg.device_ids} {py_script}" f" --max_num_seqs {self.cfg.max_num_seqs} --max_model_len {self.cfg.max_model_len}" f" --gpu_memory_utilization {self.cfg.cache_config.gpu_memory_utilization}" f" --model {self.cfg.model_name_or_path!s}" f" --device_ids {self.cfg.device_ids}" f" --tensor_parallel_size {self.cfg.tensor_parallel_size}" f" --engine_worker_queue_port {self.cfg.engine_worker_queue_port!s}" f" --pod_ip {self.cfg.master_ip}" f" --total_block_num {self.cfg.cache_config.total_block_num}" f" --block_size {self.cfg.cache_config.block_size}" f" --enc_dec_block_num {self.cfg.cache_config.enc_dec_block_num}" f" --eos_tokens_lens {self.data_processor.eos_token_id_len}" f" --pad_token_id {self.data_processor.pad_token_id}" f" --engine_pid {self.engine_pid}" f" --max_num_batched_tokens {self.cfg.max_num_batched_tokens}" f" --splitwise_role {self.cfg.splitwise_role}" f" --kv_cache_ratio {self.cfg.cache_config.kv_cache_ratio}" f" --expert_parallel_size {self.cfg.parallel_config.expert_parallel_size}" f" --data_parallel_size {self.cfg.parallel_config.data_parallel_size}" f" --quantization {self.cfg.model_config.quantization}" f" --ori_vocab_size {ori_vocab_size}" f" --speculative_config '{self.cfg.speculative_config.to_json_string()}'" f" --graph_optimization_config '{self.cfg.graph_optimization_config.to_json_string()}'" f" --guided_decoding_backend {self.cfg.guided_decoding_backend}" f" --load_strategy {self.cfg.load_config.load_strategy}" f" --early_stop_config '{self.cfg.early_stop_config.to_json_string()}'" f" --load_choices {self.cfg.load_choices}" ) worker_append_flag = { "enable_expert_parallel": self.cfg.parallel_config.enable_expert_parallel, "enable_prefix_caching": self.cfg.cache_config.enable_prefix_caching, "enable_chunked_prefill": self.cfg.cache_config.enable_chunked_prefill, "do_profile": self.do_profile, "dynamic_load_weight": self.cfg.load_config.dynamic_load_weight, "disable_any_whitespace": self.cfg.disable_any_whitespace, "enable_custom_all_reduce": self.cfg.parallel_config.enable_custom_all_reduce, "enable_logprob": self.cfg.enable_logprob, "enable_mm": self.cfg.enable_mm, } for worker_flag, value in worker_append_flag.items(): if value: arguments = arguments + f" --{worker_flag}" if self.cfg.nnode > 1: pd_cmd = pd_cmd + f" --ips {','.join(self.cfg.ips)} --nnodes {len(self.cfg.ips)}" pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log" llm_logger.info(f"Launch worker service command: {pd_cmd}") p = subprocess.Popen( pd_cmd, stdout=subprocess.PIPE, shell=True, preexec_fn=os.setsid, ) return p def _format_and_add_data(self, prompts: dict): if "request_id" in prompts: prompts["request_id"] = prompts["request_id"] if "request_id" not in prompts: request_id = str(uuid.uuid4()) prompts["request_id"] = request_id query_list = [] if "context" in prompts: for item in prompts["context"]: if item["role"] == "system": prompts["system"] = item["utterance"] elif item["role"] in ["user", "assistant"]: query_list.append(item["utterance"]) prompts["prompt"] = query_list if "max_tokens" not in prompts: prompts["max_tokens"] = self.cfg.max_model_len self.add_requests(prompts) return prompts["request_id"] def generate(self, prompts, stream): """ Generates a response based on the given prompt using the model. Args: prompts (dict): The prompt to use for generating the response. stream (bool): Whether to stream the output or wait until completion. Yields: dict: The generated response. """ llm_logger.info(f"Starting generation for prompt: {prompts}") try: req_id = self._format_and_add_data(prompts) except Exception as e: llm_logger.error(f"Error happend while adding request, details={e}") raise EngineError(str(e), error_code=400) # Get the result of the current request for result in self._get_generated_tokens(req_id): is_end = result.finished if stream and not is_end: processed = self.data_processor.process_response(result) if processed is None: continue output = processed.to_dict() yield output # Exit loop if termination condition is met if is_end: processed = self.data_processor.process_response(result) output = processed.to_dict() llm_logger.debug(f"Generate result: {output}") if not stream: yield output else: output["outputs"]["text"] = "" output["outputs"]["reasoning_content"] = "" yield output self.resource_manager.check_and_free_block_tables() def _stop_profile(self): """ Stop profiling of the model server and reset variables. """ self.do_profile = 0 while self.get_profile_block_num_signal.value[0] == 0: time.sleep(1) num_gpu_blocks = self.get_profile_block_num_signal.value[0] self.cfg.cache_config.reset(num_gpu_blocks) self.resource_manager.reset_cache_config(self.cfg.cache_config) if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed": device_ids = self.cfg.device_ids.split(",") self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager( cache_config=self.cfg.cache_config, tensor_parallel_size=self.cfg.tensor_parallel_size, device_ids=device_ids, pod_ip=self.cfg.master_ip, engine_worker_queue_port=self.cfg.engine_worker_queue_port, pid_suffix=self.ipc_signal_suffix, ) def check_health(self, time_interval_threashold=30): """ Check the health of the model server by checking whether all workers are alive. """ if self.worker_healthy_live_signal.value[0]: elapsed_time = time.time() - self.worker_healthy_live_signal.value[0] if elapsed_time > time_interval_threashold: return False, "Worker Service Not Healthy" return True, "" def launch_components(self): self.token_processor.tasks_queue = self.engine_worker_queue if envs.ENABLE_V1_KVCACHE_SCHEDULER: self.insert_task_to_worker_thread = threading.Thread(target=self._scheduler_task_to_worker_v1, daemon=True) else: self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, daemon=True) self.insert_task_to_worker_thread.start() if self.api_server_pid is not None: self.insert_task_to_scheduler_thread = threading.Thread( target=self._insert_zmq_task_to_scheduler, daemon=True ) self.insert_task_to_scheduler_thread.start() self.receive_output_thread = threading.Thread(target=self._zmq_send_generated_tokens, daemon=True) self.receive_output_thread.start() # Start TokenProcessor thread self.token_processor.run() if self.cfg.splitwise_role != "mixed": # 单机逻辑 self.engine_worker_queue.available_prefill_instances.put(1) self.split_mode_get_tasks() if self.cfg.scheduler_config.name == "splitwise": self.splitwise_receive_thread = threading.Thread(target=self.split_connector.start_receiver, args=()) self.splitwise_receive_thread.daemon = True self.splitwise_receive_thread.start() self.cfg.init_cache_info() role = self.cfg.splitwise_role host_ip = self.cfg.host_ip disaggregate = self.cfg.disaggregate_info if self.cfg.scheduler_config.name == "splitwise": self.scheduler.start(role, host_ip, disaggregate) time.sleep(1) expert_service_nums = self.cfg.parallel_config.data_parallel_size // self.cfg.nnode if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1: self.dp_processed = [] for i in range( 1, expert_service_nums, ): time.sleep(1) self.dp_processed.append( multiprocessing.Process( target=start_expert_service, args=( self.cfg, i + self.cfg.node_rank * self.cfg.worker_num_per_node, self.ipc_signal_suffix, ), ) ) llm_logger.info( f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}" + f" data parallel id {i}" ) self.dp_processed[-1].start() for i in range(1, expert_service_nums): while self.launched_expert_service_signal.value[i] == 0: time.sleep(10) def check_worker_initialize_status(self): """ Check the initlialize status of workers by stdout logging """ def detect_thread(): for line in self.worker_proc.stdout: line = line.decode("utf-8", errors="ignore") if self.worker_init_status.get("finished", False): break if match := re.search( r"Loading (?:fastsafetensors |safetensors )?checkpoint shards:\s*(\d+)", line, ): self.worker_init_status["weight_loadding"] = eval(match.group(1)) * 1.0 / 100 elif (match := re.search(r"Start load layer (\d+)", line)) or ( match := re.search(r"set state for layer (\d+)", line) ): progress = eval(match.group(1)) * 1.0 / self.cfg.model_config.num_hidden_layers self.worker_init_status["layer_loadding"] = progress if self.worker_init_status["layer_loadding"] == self.cfg.model_config.num_hidden_layers - 1: self.worker_init_status["finished"] = True self.checking_worker_status_thread = threading.Thread(target=detect_thread, daemon=True) self.checking_worker_status_thread.start() # display weight loadding progress with tqdm(total=100, desc="Loading Weights") as pbar: progress = 0 while progress < 100: progress = int(self.worker_init_status.get("weight_loadding", 0) * 100) if self.worker_init_status.get("layer_loadding", 0) > 0 or self._worker_processes_ready(): progress = 100 pbar.update(progress - pbar.n) pbar.refresh() time.sleep(0.5) if self.worker_proc.poll() is not None: return False # display layer loadding progress with tqdm(total=100, desc="Loading Layers") as pbar: progress = 0 while progress < 100: progress = int(self.worker_init_status.get("layer_loadding", 0) * 100) if self._worker_processes_ready(): progress = 100 pbar.update(progress - pbar.n) pbar.refresh() time.sleep(0.5) if self.worker_proc.poll() is not None: return False self.worker_init_status["finished"] = True try: self.checking_worker_status_thread.join(timeout=1) except Exception: pass return True def start_queue_service(self): """ start queue service for engine worker communication """ address = (self.cfg.master_ip, self.cfg.engine_worker_queue_port) if self.cfg.host_ip == self.cfg.master_ip or self.cfg.master_ip == "0.0.0.0": llm_logger.info(f"Starting engine worker queue server service at {address}") self.engine_worker_queue_server = EngineWorkerQueue( address=address, is_server=True, num_client=self.cfg.tensor_parallel_size, local_data_parallel_size=self.cfg.parallel_config.data_parallel_size, ) if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed": self.cache_task_queue = EngineCacheQueue( address=( self.cfg.master_ip, self.cfg.cache_config.cache_queue_port, ), authkey=b"cache_queue_service", is_server=True, num_client=self.cfg.tensor_parallel_size, client_id=-1, local_data_parallel_size=self.cfg.parallel_config.data_parallel_size, ) self.engine_worker_queue = EngineWorkerQueue( address=address, is_server=False, num_client=self.cfg.tensor_parallel_size, client_id=0, local_data_parallel_size=self.cfg.parallel_config.data_parallel_size, local_data_parallel_id=min( self.cfg.worker_num_per_node * self.cfg.node_rank, self.cfg.parallel_config.data_parallel_size - 1, ), )