# YOLOv5Seg准备部署模型 - YOLOv5Seg v7.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v7.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v7.0) - (1)[官方库](https://github.com/ultralytics/yolov5/releases/tag/v7.0)提供的*.onnx可直接进行部署; - (2)开发者基于自己数据训练的YOLOv5Seg v7.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后,完成部署。 ## 下载预训练ONNX模型 为了方便开发者的测试,下面提供了YOLOv5Seg导出的各系列模型,开发者可直接下载使用。(下表中模型的精度来源于源官方库) | 模型 | 大小 | 精度 | 备注 | |:---------------------------------------------------------------- |:----- |:----- |:----- | | [YOLOv5n-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-seg.onnx) | 7.7MB | 27.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License | | [YOLOv5s-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx) | 30MB | 37.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License | | [YOLOv5m-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m-seg.onnx) | 84MB | 45.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License | | [YOLOv5l-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l-seg.onnx) | 183MB | 49.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License | | [YOLOv5x-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-seg.onnx) | 339MB | 50.7% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License | ## 详细部署文档 - [Python部署](python) - [C++部署](cpp) ## 版本说明 - 本版本文档和代码基于[YOLOv5 v7.0](https://github.com/ultralytics/yolov5/tree/v7.0) 编写