// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" void CpuInfer(const std::string& model_file, const std::string& image_file) { auto model = fastdeploy::vision::detection::YOLOv5Lite(model_file); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::DetectionResult res; if (!model.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << res.Str() << std::endl; auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } void GpuInfer(const std::string& model_file, const std::string& image_file) { auto option = fastdeploy::RuntimeOption(); option.UseGpu(); auto model = fastdeploy::vision::detection::YOLOv5Lite(model_file, "", option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::DetectionResult res; if (!model.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << res.Str() << std::endl; auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } void TrtInfer(const std::string& model_file, const std::string& image_file) { auto option = fastdeploy::RuntimeOption(); option.UseGpu(); option.UseTrtBackend(); option.SetTrtInputShape("images", {1, 3, 640, 640}); auto model = fastdeploy::vision::detection::YOLOv5Lite(model_file, "", option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::DetectionResult res; if (!model.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << res.Str() << std::endl; auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } int main(int argc, char* argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/model path/to/image run_option, " "e.g ./infer_model ./v5Lite-g-sim-640.onnx ./test.jpeg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend." << std::endl; return -1; } if (std::atoi(argv[3]) == 0) { CpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 1) { GpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 2) { TrtInfer(argv[1], argv[2]); } return 0; }