# 在 Windows 使用 FastDeploy C++ SDK 在 Windows 下使用 FastDeploy C++ SDK 与在 Linux 下使用稍有不同。以下以 PPYOLOE 为例进行演示在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。在部署前,需确认以下两个步骤: - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../environment.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../quick_start) ## 目录 - [环境依赖](#Environment) - [下载 FastDeploy Windows 10 C++ SDK](#Download) - [Windows下多种方式使用 C++ SDK 的方式](#CommandLine) - [方式一:命令行方式使用 C++ SDK](#CommandLine) - [步骤一:在 Windows 命令行终端 上编译 example](#CommandLine) - [步骤二:运行可执行文件获得推理结果](#CommandLine) - [方式二:Visual Studio 2019 IDE 方式使用 C++ SDK](#VisualStudio2019) - [步骤一:Visual Studio 2019 创建CMake工程项目](#VisualStudio20191) - [步骤二:在CMakeLists中配置 FastDeploy C++ SDK](#VisualStudio20192) - [步骤三:生成工程缓存并修改CMakeSetting.json配置](#VisualStudio20193) - [步骤四:生成可执行文件,运行获取结果](#VisualStudio20194) - [方式三:CLion IDE 方式使用 C++ SDK](#CLion) - [方式四:Visual Studio Code IDE 方式使用 C++ SDK](#VisualStudioCode) - [多种方法配置exe运行时所需的依赖库](#CommandLineDeps1) - [方式一:修改CMakeLists.txt,一行命令配置(推荐)](#CommandLineDeps1) - [方式二:命令行设置环境变量](#CommandLineDeps2) - [方法三:手动拷贝依赖库到exe的目录下](#CommandLineDeps3) ## 1. 环境依赖
- cmake >= 3.12 - Visual Studio 16 2019 - cuda >= 11.2 (当WITH_GPU=ON) - cudnn >= 8.0 (当WITH_GPU=ON) - TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON) ## 2. 下载 FastDeploy Windows 10 C++ SDK
可以从以下链接下载编译好的 FastDeploy Windows 10 C++ SDK,SDK中包含了examples代码。 ```text https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-win-x64-gpu-0.2.1.zip ``` ## 3. 准备模型文件和测试图片 可以从以下链接下载模型文件和测试图片,并解压缩 ```text https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz # (下载后解压缩) https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg ``` ## 4. SDK使用方式一:命令行方式使用 C++ SDK
### 4.1 在 Windows 上编译 PPYOLOE Windows菜单打开`x64 Native Tools Command Prompt for VS 2019`命令工具,cd到ppyoloe的demo路径 ```bat cd fastdeploy-win-x64-gpu-0.2.0\examples\vision\detection\paddledetection\cpp ``` ```bat mkdir build && cd build cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1 -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2" ``` 然后执行 ```bat msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64 ``` ### 4.2 运行 demo ```bat cd Release infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 0 # CPU infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 1 # GPU infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 2 # GPU + TensorRT ``` 特别说明,exe运行时所需要的依赖库配置方法,请参考章节: [多种方法配置exe运行时所需的依赖库](#CommandLineDeps) ## 5. SDK使用方式二:Visual Studio 2019 IDE 方式使用 C++ SDK
### 5.1 步骤一:Visual Studio 2019 创建“CMake”工程项目
(1)打开Visual Studio 2019,点击"创建新项目"->点击"CMake",从而创建CMake工程项目。以PPYOLOE为例,来说明如何在Visual Studio 2019 IDE中使用FastDeploy C++ SDK. ![image](https://user-images.githubusercontent.com/31974251/192143543-9f29e4cb-2307-45ca-a61a-bcfba5df19ff.png) ![image](https://user-images.githubusercontent.com/31974251/192143640-39e79c65-8b50-4254-8da6-baa21bb23e3c.png) ![image](https://user-images.githubusercontent.com/31974251/192143713-be2e6490-4cab-4151-8463-8c367dbc451a.png) (2)打开工程发现,Visual Stuio 2019已经为我们生成了一些基本的文件,其中包括CMakeLists.txt。infer_ppyoloe.h头文件这里实际上用不到,我们可以直接删除。 ![image](https://user-images.githubusercontent.com/31974251/192143930-db1655c2-66ee-448c-82cb-0103ca1ca2a0.png) ### 5.2 步骤二:在CMakeLists中配置 FastDeploy C++ SDK
(1)在工程创建完成后,我们需要添加infer_ppyoloe推理源码,并修改CMakeLists.txt,修改如下: ![image](https://user-images.githubusercontent.com/31974251/192144782-79bccf8f-65d0-4f22-9f41-81751c530319.png) (2)其中infer_ppyoloe.cpp的代码可以直接从examples中的代码拷贝过来: - [examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc](../../examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc) (3)CMakeLists.txt主要包括配置FastDeploy C++ SDK的路径,如果是GPU版本的SDK,还需要配置CUDA_DIRECTORY为CUDA的安装路径,CMakeLists.txt的配置如下: ```cmake project(infer_ppyoloe_demo C CXX) cmake_minimum_required(VERSION 3.12) # Only support "Release" mode now set(CMAKE_BUILD_TYPE "Release") # Set FastDeploy install dir set(FASTDEPLOY_INSTALL_DIR "D:/qiuyanjun/fastdeploy-win-x64-gpu-0.2.1" CACHE PATH "Path to downloaded or built fastdeploy sdk.") # Set CUDA_DIRECTORY (CUDA 11.x) for GPU SDK set(CUDA_DIRECTORY "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7" CACHE PATH "Path to installed CUDA Toolkit.") include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) include_directories(${FASTDEPLOY_INCS}) add_executable(infer_ppyoloe_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloe.cpp) target_link_libraries(infer_ppyoloe_demo ${FASTDEPLOY_LIBS}) # Optional: install all DLLs to binary dir. install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release) ``` ### 5.3 步骤三:生成工程缓存并修改CMakeSetting.json配置
(1)点击"CMakeLists.txt"->右键点击"生成缓存": ![image](https://user-images.githubusercontent.com/31974251/192145349-c78b110a-0e41-4ee5-8942-3bf70bd94a75.png) 发现已经成功生成缓存了,但是由于打开工程时,默认是Debug模式,我们发现exe和缓存保存路径还是Debug模式下的。 我们可以先修改CMake的设置为Release. (2)点击"CMakeLists.txt"->右键点击"infer_ppyoloe_demo的cmake设置",进入CMakeSettings.json的设置面板,把其中的Debug设置修改为Release. ![image](https://user-images.githubusercontent.com/31974251/192145242-01d37b44-e2fa-47df-82c1-c11c2ccbff99.png) 同时设置CMake生成器为 "Visual Studio 16 2019 Win64" ![image](https://user-images.githubusercontent.com/31974251/192147961-ac46d0f6-7349-4126-a123-914af2b63d95.jpg) (3)点击保存CMake缓存以切换为Release配置: ![image](https://user-images.githubusercontent.com/31974251/192145974-b5a63341-9143-49a2-8bfe-94ac641b1670.png) (4):(4.1)点击"CMakeLists.txt"->右键"CMake缓存仅限x64-Release"->"点击删除缓存";(4.2)点击"CMakeLists.txt"->"生成缓存";(4.3)如果在步骤一发现删除缓存的选项是灰色的可以直接点击"CMakeLists.txt"->"生成",若生成失败则可以重复尝试(4.1)和(4。2) ![image](https://user-images.githubusercontent.com/31974251/192146394-51fbf2b8-1cba-41ca-bb45-5f26890f64ce.jpg) 最终可以看到,配置已经成功生成Relase模式下的CMake缓存了。 ![image](https://user-images.githubusercontent.com/31974251/192146239-a1eacd9e-034d-4373-a262-65b18ce25b87.png) ### 5.4 步骤四:生成可执行文件,运行获取结果。
(1)点击"CMakeLists.txt"->"生成"。可以发现已经成功生成了infer_ppyoloe_demo.exe,并保存在`out/build/x64-Release/Release`目录下。 ![image](https://user-images.githubusercontent.com/31974251/192146852-c64d2252-8c8f-4309-a950-908a5cb258b8.png) (2)执行可执行文件,获得推理结果。 首先需要拷贝所有的dll到exe所在的目录下,这里我们可以在CMakeLists.txt添加一下命令,可将FastDeploy中所有的dll安装到指定的目录。 ```cmake install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release) ``` (3)同时,也需要把ppyoloe的模型文件和测试图片下载解压缩后,拷贝到exe所在的目录。 准备完成后,目录结构如下: ![image](https://user-images.githubusercontent.com/31974251/192147505-054edb77-564b-405e-89ee-fd0d2e413e78.png) (4)最后,执行以下命令获得推理结果: ```bat D:\xxxinfer_ppyoloe\out\build\x64-Release\Release>infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 0 [INFO] fastdeploy/runtime.cc(304)::fastdeploy::Runtime::Init Runtime initialized with Backend::OPENVINO in Device::CPU. DetectionResult: [xmin, ymin, xmax, ymax, score, label_id] 415.047180,89.311569, 506.009613, 283.863098, 0.950423, 0 163.665710,81.914932, 198.585342, 166.760895, 0.896433, 0 581.788635,113.027618, 612.623474, 198.521713, 0.842596, 0 267.217224,89.777306, 298.796051, 169.361526, 0.837951, 0 ...... 153.301407,123.233757, 177.130539, 164.558350, 0.066697, 60 505.887604,140.919601, 523.167236, 151.875336, 0.084912, 67 Visualized result saved in ./vis_result.jpg ``` 打开保存的图片查看可视化结果:
特别说明,exe运行时所需要的依赖库配置方法,请参考章节: [多种方法配置exe运行时所需的依赖库](#CommandLineDeps) ## 6. 多种方法配置exe运行时所需的依赖库
### 6.1 方式一:修改CMakeLists.txt,一行命令配置(推荐)
考虑到Windows下C++开发的特殊性,如经常需要拷贝所有的lib或dll文件到某个指定的目录,FastDeploy提供了`install_fastdeploy_libraries`的cmake函数,方便用户快速配置所有的dll。修改ppyoloe的CMakeLists.txt,添加: ```cmake install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release) ``` ### 6.2 方式二:命令行设置环境变量
编译好的exe保存在Release目录下,在运行demo前,需要将模型和测试图片拷贝至该目录。另外,需要在终端指定DLL的搜索路径。请在build目录下执行以下命令。 ```bat set FASTDEPLOY_HOME=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1 set PATH=%FASTDEPLOY_HOME%\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\bin;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\paddle\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mkldnn\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mklml\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle2onnx\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\tensorrt\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\third_party\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\yaml-cpp\lib;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\bin;%PATH% set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\3rdparty\tbb\bin;%PATH% ``` 注意,需要拷贝onnxruntime.dll到exe所在的目录。 ```bat copy /Y %FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib\onnxruntime* Release\ ``` 由于较新的Windows在System32系统目录下自带了onnxruntime.dll,因此就算设置了PATH,系统依然会出现onnxruntime的加载冲突。因此需要先拷贝demo用到的onnxruntime.dll到exe所在的目录。如下 ```bat where onnxruntime.dll C:\Windows\System32\onnxruntime.dll # windows自带的onnxruntime.dll ``` 可以把上述命令拷贝并保存到build目录下的某个bat脚本文件中(包含copy onnxruntime),如`setup_fastdeploy_dll.bat`,方便多次使用。 ```bat setup_fastdeploy_dll.bat ``` ### 6.3 方式三:手动拷贝依赖库到exe的目录下
手动拷贝,或者在build目录下执行以下命令: ```bat set FASTDEPLOY_HOME=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1 copy /Y %FASTDEPLOY_HOME%\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\bin\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\paddle\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mkldnn\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mklml\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle2onnx\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\tensorrt\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\third_party\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\yaml-cpp\lib\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.dll Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.xml Release\ copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\3rdparty\tbb\bin\*.dll Release\ ``` 可以把上述命令拷贝并保存到build目录下的某个bat脚本文件中,如`copy_fastdeploy_dll.bat`,方便多次使用。 ```bat copy_fastdeploy_dll.bat ``` 特别说明:上述的set和copy命令对应的依赖库路径,需要用户根据自己使用SDK中的依赖库进行适当地修改。比如,若是CPU版本的SDK,则不需要TensorRT相关的设置。 ## 7. CLion 2022 IDE 方式使用 C++ SDK
- TODO ## 8. Visual Studio Code IDE 方式使用 C++ SDK
- TODO