[English](../../../en/quick_start/runtime/cpp.md) | 中文 # C++推理 确认开发环境已准备FastDeploy C++部署库,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。 本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例 ## 1. 获取模型 ```bash wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz tar xvf mobilenetv2.tgz ``` ## 2. 配置后端 如下C++代码保存为`infer_paddle_onnxruntime.cc` ``` c++ #include "fastdeploy/runtime.h" namespace fd = fastdeploy; int main(int argc, char* argv[]) { std::string model_file = "mobilenetv2/inference.pdmodel"; std::string params_file = "mobilenetv2/inference.pdiparams"; // setup option fd::RuntimeOption runtime_option; runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE); runtime_option.UseOrtBackend(); runtime_option.SetCpuThreadNum(12); // init runtime std::unique_ptr runtime = std::unique_ptr(new fd::Runtime()); if (!runtime->Init(runtime_option)) { std::cerr << "--- Init FastDeploy Runitme Failed! " << "\n--- Model: " << model_file << std::endl; return -1; } else { std::cout << "--- Init FastDeploy Runitme Done! " << "\n--- Model: " << model_file << std::endl; } // init input tensor shape fd::TensorInfo info = runtime->GetInputInfo(0); info.shape = {1, 3, 224, 224}; std::vector input_tensors(1); std::vector output_tensors(1); std::vector inputs_data; inputs_data.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data.size(); ++i) { inputs_data[i] = std::rand() % 1000 / 1000.0f; } input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data()); //get input name input_tensors[0].name = info.name; runtime->Infer(input_tensors, &output_tensors); output_tensors[0].PrintInfo(); return 0; } ``` 加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备 ``` [INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU. ``` ## 3. 准备CMakeLists.txt FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下, ```cmake PROJECT(runtime_demo C CXX) CMAKE_MINIMUM_REQUIRED (VERSION 3.12) # 指定下载解压后的fastdeploy库路径 option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.") include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) # 添加FastDeploy依赖头文件 include_directories(${FASTDEPLOY_INCS}) add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc) # 添加FastDeploy库依赖 target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS}) ``` ## 4. 编译可执行程序 打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令 ```bash cd examples/runtime/cpp mkdir build & cd build cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk make -j ``` ```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径 编译完成后,使用如下命令执行可得到预测结果 ```bash ./runtime_demo ``` 执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。 ```bash source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh ``` 本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../faq/use_sdk_on_windows.md) ## 其它文档 - [不同后端Runtime demo示例](../../../../examples/runtime/README.md) - [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md)