# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os from subprocess import run from prepare_npz import prepare def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--auto", action="store_true", help="Auto download, convert, compile and infer if True") parser.add_argument( "--pp_detect_path", default='/workspace/PaddleDetection', help="Path of PaddleDetection folder") parser.add_argument( "--model_file", required=True, help="Path of sophgo model.") parser.add_argument("--config_file", required=True, help="Path of config.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") return parser.parse_args() def export_model(args): PPDetection_path = args.pp_detect_path export_str = 'python3 tools/export_model.py \ -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_s_3x_dota.yml \ -output_dir=output_inference \ -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_s_3x_dota.pdparams' cur_path = os.getcwd() os.chdir(PPDetection_path) print(export_str) run(export_str, shell=True) cp_str = 'cp -r ./output_inference/ppyoloe_crn_s_300e_coco ' + cur_path print(cp_str) run(cp_str, shell=True) os.chdir(cur_path) def paddle2onnx(): convert_str = 'paddle2onnx --model_dir ppyoloe_r_crn_s_3x_dota \ --model_filename model.pdmodel \ --params_filename model.pdiparams \ --save_file ppyoloe_r_crn_s_3x_dota.onnx \ --enable_dev_version True' print(convert_str) run(convert_str, shell=True) def mlir_prepare(): mlir_path = os.getenv("MODEL_ZOO_PATH") mlir_path = mlir_path[:-13] regression_path = os.path.join(mlir_path, 'regression') mv_str_list = [ 'mkdir ppyoloe_r', 'cp -rf ' + os.path.join( regression_path, 'dataset/COCO2017/') + ' ./ppyoloe_r', 'cp -rf ' + os.path.join(regression_path, 'image/') + ' ./ppyoloe_r', 'cp ppyoloe_r_crn_s_3x_dota.onnx ./ppyoloe_r', 'mkdir ./ppyoloe_r/workspace' ] for str in mv_str_list: print(str) run(str, shell=True) def image_prepare(): img_str = 'wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/P0861__1.0__1154___824.png' if not os.path.exists('P0861__1.0__1154___824.png'): print(img_str) run(img_str, shell=True) prepare('P0861__1.0__1154___824.png', [640, 640]) cp_npz_str = 'cp ./inputs.npz ./ppyoloe_r' print(cp_npz_str) run(cp_npz_str, shell=True) def onnx2mlir(): transform_str = 'model_transform.py \ --model_name ppyoloe_r_crn_s_3x_dota \ --model_def ../ppyoloe_r_crn_s_3x_dota.onnx \ --input_shapes [[1,3,1024,1024],[1,2]] \ --keep_aspect_ratio \ --pixel_format rgb \ --mlir ppyoloe_r_crn_s_3x_dota.mlir' os.chdir('./ppyoloe_r/workspace') print(transform_str) run(transform_str, shell=True) os.chdir('../../') def mlir2bmodel(): deploy_str = 'model_deploy.py \ --mlir ppyoloe_r_crn_s_3x_dota.mlir \ --quantize F32 \ --chip bm1684x \ --model ppyoloe_r_crn_s_3x_dota_1684x_f32.bmodel' os.chdir('./ppyoloe_r/workspace') print(deploy_str) run(deploy_str, shell=True) os.chdir('../../') if __name__ == "__main__": args = parse_arguments() if args.auto: export_model(args) paddle2onnx() mlir_prepare() image_prepare() onnx2mlir() mlir2bmodel() model_file = './ppyoloe/workspace/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel' if args.auto else args.model_file params_file = "" config_file = './ppyoloe_r_crn_s_3x_dota/infer_cfg.yml' if args.auto else args.config_file image_file = './P0861__1.0__1154___824.png' if args.auto else args.image # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() runtime_option.use_sophgo() model = fd.vision.detection.PPYOLOER( model_file, params_file, config_file, runtime_option=runtime_option, model_format=fd.ModelFormat.SOPHGO) # 预测图片分割结果 im = cv2.imread(image_file) result = model.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_detection(im, result, score_threshold=0.1) cv2.imwrite("sophgo_result_ppyoloe_r.jpg", vis_im) print("Visualized result save in ./sophgo_result_ppyoloe_r.jpg")