// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/backends/openvino/ov_backend.h" #ifdef ENABLE_PADDLE_FRONTEND #include "paddle2onnx/converter.h" #endif namespace fastdeploy { std::vector PartialShapeToVec(const ov::PartialShape& shape) { std::vector res; for (int i = 0; i < shape.size(); ++i) { auto dim = shape[i]; if (dim.is_dynamic()) { res.push_back(-1); } else { res.push_back(dim.get_length()); } } return res; } FDDataType OpenVINODataTypeToFD(const ov::element::Type& type) { if (type == ov::element::f32) { return FDDataType::FP32; } else if (type == ov::element::f64) { return FDDataType::FP64; } else if (type == ov::element::i8) { return FDDataType::INT8; } else if (type == ov::element::u8) { return FDDataType::UINT8; } else if (type == ov::element::i32) { return FDDataType::INT32; } else if (type == ov::element::i64) { return FDDataType::INT64; } else { FDASSERT(false, "Only support float/double/int8/int32/int64 now."); } return FDDataType::FP32; } ov::element::Type FDDataTypeToOV(const FDDataType& type) { if (type == FDDataType::FP32) { return ov::element::f32; } else if (type == FDDataType::FP64) { return ov::element::f64; } else if (type == FDDataType::INT8) { return ov::element::i8; } else if (type == FDDataType::UINT8) { return ov::element::u8; } else if (type == FDDataType::INT32) { return ov::element::i32; } else if (type == FDDataType::INT64) { return ov::element::i64; } FDASSERT(false, "Only support float/double/int8/uint8/int32/int64 now."); return ov::element::f32; } void OpenVINOBackend::InitTensorInfo( const std::vector>& ov_outputs, std::map* tensor_infos) { for (size_t i = 0; i < ov_outputs.size(); ++i) { TensorInfo info; auto partial_shape = PartialShapeToVec(ov_outputs[i].get_partial_shape()); info.shape.assign(partial_shape.begin(), partial_shape.end()); info.name = ov_outputs[i].get_any_name(); info.dtype = OpenVINODataTypeToFD(ov_outputs[i].get_element_type()); tensor_infos->insert(std::make_pair(info.name, info)); } } bool OpenVINOBackend::InitFromPaddle(const std::string& model_file, const std::string& params_file, const OpenVINOBackendOption& option) { if (initialized_) { FDERROR << "OpenVINOBackend is already initlized, cannot initialize again." << std::endl; return false; } option_ = option; ov::AnyMap properties; if (option_.cpu_thread_num > 0) { properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num; } std::shared_ptr model = core_.read_model(model_file, params_file); // Get inputs/outputs information from loaded model const std::vector> inputs = model->inputs(); std::map input_infos; InitTensorInfo(inputs, &input_infos); const std::vector> outputs = model->outputs(); std::map output_infos; InitTensorInfo(outputs, &output_infos); // OpenVINO model may not keep the same order with original model // So here will reorder it's inputs and outputs std::string model_content; ReadBinaryFromFile(model_file, &model_content); auto reader = paddle2onnx::PaddleReader(model_content.c_str(), model_content.size()); if (reader.num_inputs != input_infos.size()) { FDERROR << "The number of inputs from PaddleReader:" << reader.num_inputs << " not equal to the number of inputs from OpenVINO:" << input_infos.size() << "." << std::endl; return false; } if (reader.num_outputs != output_infos.size()) { FDERROR << "The number of outputs from PaddleReader:" << reader.num_outputs << " not equal to the number of outputs from OpenVINO:" << output_infos.size() << "." << std::endl; return false; } for (int i = 0; i < reader.num_inputs; ++i) { auto iter = input_infos.find(std::string(reader.inputs[i].name)); if (iter == input_infos.end()) { FDERROR << "Cannot find input name:" << reader.inputs[i].name << " from OpenVINO model." << std::endl; return false; } input_infos_.push_back(iter->second); } for (int i = 0; i < reader.num_outputs; ++i) { auto iter = output_infos.find(std::string(reader.outputs[i].name)); if (iter == output_infos.end()) { FDERROR << "Cannot find output name:" << reader.outputs[i].name << " from OpenVINO model." << std::endl; return false; } output_infos_.push_back(iter->second); } compiled_model_ = core_.compile_model(model, "CPU", properties); request_ = compiled_model_.create_infer_request(); initialized_ = true; return true; } TensorInfo OpenVINOBackend::GetInputInfo(int index) { FDASSERT(index < NumInputs(), "The index: %d should less than the number of outputs: %d.", index, NumOutputs()); return input_infos_[index]; } std::vector OpenVINOBackend::GetInputInfos() { return input_infos_; } std::vector OpenVINOBackend::GetOutputInfos() { return output_infos_; } TensorInfo OpenVINOBackend::GetOutputInfo(int index) { FDASSERT(index < NumOutputs(), "The index: %d should less than the number of outputs: %d.", index, NumOutputs()); return output_infos_[index]; } bool OpenVINOBackend::InitFromOnnx(const std::string& model_file, const OpenVINOBackendOption& option) { if (initialized_) { FDERROR << "OpenVINOBackend is already initlized, cannot initialize again." << std::endl; return false; } option_ = option; ov::AnyMap properties; if (option_.cpu_thread_num > 0) { properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num; } std::shared_ptr model = core_.read_model(model_file); // Get inputs/outputs information from loaded model const std::vector> inputs = model->inputs(); std::map input_infos; InitTensorInfo(inputs, &input_infos); const std::vector> outputs = model->outputs(); std::map output_infos; InitTensorInfo(outputs, &output_infos); // OpenVINO model may not keep the same order with original model // So here will reorder it's inputs and outputs std::string model_content; ReadBinaryFromFile(model_file, &model_content); auto reader = paddle2onnx::OnnxReader(model_content.c_str(), model_content.size()); if (reader.num_inputs != input_infos.size()) { FDERROR << "The number of inputs from OnnxReader:" << reader.num_inputs << " not equal to the number of inputs from OpenVINO:" << input_infos.size() << "." << std::endl; return false; } if (reader.num_outputs != output_infos.size()) { FDERROR << "The number of outputs from OnnxReader:" << reader.num_outputs << " not equal to the number of outputs from OpenVINO:" << output_infos.size() << "." << std::endl; return false; } for (int i = 0; i < reader.num_inputs; ++i) { auto iter = input_infos.find(std::string(reader.inputs[i].name)); if (iter == input_infos.end()) { FDERROR << "Cannot find input name:" << reader.inputs[i].name << " from OpenVINO model." << std::endl; return false; } input_infos_.push_back(iter->second); } for (int i = 0; i < reader.num_outputs; ++i) { auto iter = output_infos.find(std::string(reader.outputs[i].name)); if (iter == output_infos.end()) { FDERROR << "Cannot find output name:" << reader.outputs[i].name << " from OpenVINO model." << std::endl; return false; } output_infos_.push_back(iter->second); } compiled_model_ = core_.compile_model(model, "CPU", properties); request_ = compiled_model_.create_infer_request(); initialized_ = true; return true; } int OpenVINOBackend::NumInputs() const { return input_infos_.size(); } int OpenVINOBackend::NumOutputs() const { return output_infos_.size(); } bool OpenVINOBackend::Infer(std::vector& inputs, std::vector* outputs) { if (inputs.size() != input_infos_.size()) { FDERROR << "[OpenVINOBackend] Size of the inputs(" << inputs.size() << ") should keep same with the inputs of this model(" << input_infos_.size() << ")." << std::endl; return false; } for (size_t i = 0; i < inputs.size(); ++i) { ov::Shape shape(inputs[i].shape.begin(), inputs[i].shape.end()); ov::Tensor ov_tensor(FDDataTypeToOV(inputs[i].dtype), shape, inputs[i].Data()); request_.set_tensor(inputs[i].name, ov_tensor); } request_.infer(); outputs->resize(output_infos_.size()); for (size_t i = 0; i < output_infos_.size(); ++i) { auto out_tensor = request_.get_output_tensor(i); auto out_tensor_shape = out_tensor.get_shape(); std::vector shape(out_tensor_shape.begin(), out_tensor_shape.end()); (*outputs)[i].Allocate(shape, OpenVINODataTypeToFD(out_tensor.get_element_type()), output_infos_[i].name); memcpy((*outputs)[i].MutableData(), out_tensor.data(), (*outputs)[i].Nbytes()); } return true; } } // namespace fastdeploy