""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations from dataclasses import dataclass from math import sqrt from typing import TYPE_CHECKING, Optional import paddle from fastdeploy.config import FDConfig from fastdeploy.model_executor.layers.attention.attention import Attention from fastdeploy.model_executor.layers.attention.base_attention_backend import ( AttentionBackend, AttentionMetadata, ) from fastdeploy.model_executor.ops.iluvatar import ( mixed_fused_paged_attention, paged_attention, prefill_fused_paged_attention, ) if TYPE_CHECKING: from fastdeploy.model_executor.forward_meta import ForwardMeta @dataclass class IluvatarAttentionMetadata(AttentionMetadata): """ IluvatarAttentionMetadata """ alibi_slopes: Optional[paddle.Tensor] = None window_left: int = -1 window_right: int = -1 softcap: float = 0.0 use_cuda_graph: bool = False use_sqrt_alibi: bool = False # qk[seq, h, d], cos/sin [seq, 1, d] def apply_rope(qk, cos, sin): rotate_half = paddle.reshape( paddle.stack([-qk[..., 1::2], qk[..., 0::2]], axis=-1), paddle.shape(qk), ) out = paddle.add(paddle.multiply(qk, cos), paddle.multiply(rotate_half, sin)) return paddle.cast(out, qk.dtype) class IluvatarAttnBackend(AttentionBackend): """ The backend class that uses paddle native attention implementation. Which is used only for testing purpose. """ def __init__(self, fd_config: FDConfig, kv_num_heads: int, num_heads: int, head_dim: int): super().__init__() self.attention_metadata = IluvatarAttentionMetadata() self.block_size = fd_config.parallel_config.block_size assert self.block_size == 16, "Iluvatar paged attn requires block_size must be 16." self.max_context_len = fd_config.parallel_config.max_model_len self.causal = getattr(fd_config.model_config, "causal", True) self.speculate_method = getattr(fd_config.parallel_config, "speculate_method", None) self.use_speculate = self.speculate_method is not None self.num_kv_heads = kv_num_heads self.num_heads = num_heads self.total_num_heads = num_heads + 2 * kv_num_heads self.head_dim = head_dim self.hidden_dim = fd_config.model_config.hidden_size # note: scale need to change if using MLA self.scale = 1.0 / sqrt(head_dim) self.num_layers = fd_config.model_config.num_hidden_layers self.dtype = paddle.get_default_dtype() def init_attention_metadata(self, forward_meta: ForwardMeta): """Initialize attntion metadata hence all layers in the forward pass can reuse it.""" self.rope_cos = forward_meta.rotary_embs[0, 0, :, :, :] self.rope_sin = forward_meta.rotary_embs[1, 0, :, :, :] self.prefill_info_dict = {} self.decode_info_dict = {} self.prefill_info_dict["batch_ids"] = paddle.where(forward_meta.seq_lens_encoder)[0] self.decode_info_dict["batch_ids"] = paddle.where(forward_meta.seq_lens_decoder)[0] self.prefill_len = len(self.prefill_info_dict["batch_ids"]) self.decode_len = len(self.decode_info_dict["batch_ids"]) # only prefill if self.decode_len == 0: cu_seq_ids = list(range(self.prefill_len + 1)) self.prefill_info_dict["cu_seqlens_q"] = forward_meta.cu_seqlens_q[cu_seq_ids] self.mixed = False # only decode elif self.prefill_len == 0: self.mixed = False # both prefill and decode else: self.mixed = True self.prefill_num_tokens = paddle.sum(forward_meta.seq_lens_encoder).item() self.prefill_info_dict["cu_seqlens_q"] = paddle.zeros( [self.prefill_len + 1], dtype=forward_meta.cu_seqlens_q.dtype ) self.prefill_info_dict["cu_seqlens_q"][1:] = forward_meta.seq_lens_encoder[ self.prefill_info_dict["batch_ids"], 0 ] self.prefill_info_dict["cu_seqlens_q"] = paddle.cumsum(self.prefill_info_dict["cu_seqlens_q"]) self.tmp_buffer = paddle.zeros( [self.prefill_num_tokens + self.decode_len, self.hidden_dim], dtype=self.dtype ) prefill_start, decode_start, start = 0, self.prefill_num_tokens, 0 non_zeros_ids = forward_meta.seq_lens_this_time != 0 non_zeros_seq_lens = forward_meta.seq_lens_this_time[non_zeros_ids] end = non_zeros_seq_lens[0] if end > 1: last_stage = "prefill" prefill_end = end decode_end = decode_start else: last_stage = "decode" prefill_end = 0 decode_end = decode_start + end self.id_group = [] self.reverse_id_group = [] for seq_len in non_zeros_seq_lens[1:]: if seq_len > 1: if last_stage == "decode": self.id_group.append((decode_start, decode_end)) self.reverse_id_group.append((start, end)) decode_start = decode_end start = end last_stage = "prefill" prefill_end += seq_len end += seq_len else: if last_stage == "prefill": self.id_group.append((prefill_start, prefill_end)) self.reverse_id_group.append((start, end)) prefill_start = prefill_end start = end last_stage = "decode" decode_end += seq_len end += seq_len if prefill_start < prefill_end: self.id_group.append((prefill_start, prefill_end)) self.reverse_id_group.append((start, end)) if decode_start < decode_end: self.id_group.append((decode_start, decode_end)) self.reverse_id_group.append((start, end)) def get_attntion_meta(self): """get_attntion_meta""" return self.attention_metadata def get_kv_cache_shape( self, max_num_blocks: int, kv_cache_quant_type: str = None, ): """ Calculate kv cache shape """ return ( max_num_blocks, self.num_kv_heads, self.block_size, self.head_dim, ) def transpose(self, hidden_states): for ids, reverse_ids in zip(self.id_group, self.reverse_id_group): self.tmp_buffer[ids[0] : ids[1], :] = hidden_states[reverse_ids[0] : reverse_ids[1], :] return self.tmp_buffer def reverse_transpose(self, hidden_states): for ids, reverse_ids in zip(self.id_group, self.reverse_id_group): self.tmp_buffer[reverse_ids[0] : reverse_ids[1], :] = hidden_states[ids[0] : ids[1], :] return self.tmp_buffer def forward_mixed( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ): """ forward_mixed """ layer_id = layer.layer_id k_cache_id = layer_id * 2 v_cache_id = k_cache_id + 1 k_cache = forward_meta.caches[k_cache_id] v_cache = forward_meta.caches[v_cache_id] if self.decode_len == 0: output = prefill_fused_paged_attention( qkv, k_cache, v_cache, block_tables=forward_meta.block_tables[self.prefill_info_dict["batch_ids"], :], cu_seqlens_qkv=self.prefill_info_dict["cu_seqlens_q"], num_heads=self.num_heads, head_dim=self.head_dim, num_kv_heads=self.num_kv_heads, block_size=self.block_size, max_seq_len=self.max_context_len, scale=self.scale, causal=self.causal, q_rope=True, k_rope=True, v_rope=False, rope_sin=self.rope_sin, rope_cos=self.rope_cos, ) elif self.prefill_len == 0: output = paged_attention( qkv, k_cache, v_cache, block_tables=forward_meta.block_tables[self.decode_info_dict["batch_ids"], :], seq_lens=forward_meta.seq_lens_decoder[self.decode_info_dict["batch_ids"], 0] + 1, num_heads=self.num_heads, head_dim=self.head_dim, num_kv_heads=self.num_kv_heads, scale=self.scale, block_size=self.block_size, max_context_len=self.max_context_len, alibi_slopes=self.attention_metadata.alibi_slopes, causal=self.causal, window_left=self.attention_metadata.window_left, window_right=self.attention_metadata.window_right, softcap=self.attention_metadata.softcap, use_cuda_graph=self.attention_metadata.use_cuda_graph, use_sqrt_alibi=self.attention_metadata.use_sqrt_alibi, merged_qkv=True, k=qkv, v=qkv, rope_sin=self.rope_sin, rope_cos=self.rope_cos, ) else: output = mixed_fused_paged_attention( qkv, k_cache, v_cache, prefill_block_tables=forward_meta.block_tables[self.prefill_info_dict["batch_ids"], :], decode_block_tables=forward_meta.block_tables[self.decode_info_dict["batch_ids"], :], cu_seqlens_qkv=self.prefill_info_dict["cu_seqlens_q"], seq_lens=forward_meta.seq_lens_decoder[self.decode_info_dict["batch_ids"], 0] + 1, prefill_num_tokens=self.prefill_num_tokens, num_heads=self.num_heads, head_dim=self.head_dim, num_kv_heads=self.num_kv_heads, block_size=self.block_size, max_seq_len=self.max_context_len, scale=self.scale, causal=self.causal, q_rope=True, k_rope=True, v_rope=False, window_left=self.attention_metadata.window_left, window_right=self.attention_metadata.window_right, softcap=self.attention_metadata.softcap, use_cuda_graph=self.attention_metadata.use_cuda_graph, use_sqrt_alibi=self.attention_metadata.use_sqrt_alibi, rope_sin=self.rope_sin, rope_cos=self.rope_cos, ) return output