# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Environment variables used by FastDeploy. """ import os from typing import Any, Callable environment_variables: dict[str, Callable[[], Any]] = { # Whether to use BF16 on CPU. "FD_CPU_USE_BF16": lambda: os.getenv("FD_CPU_USE_BF16", "False"), # Cuda architecture to build FastDeploy.This is a list of strings # such as [80,90]. "FD_BUILDING_ARCS": lambda: os.getenv("FD_BUILDING_ARCS", "[]"), # Log directory. "FD_LOG_DIR": lambda: os.getenv("FD_LOG_DIR", "log"), # Whether to use debug mode, can set 0 or 1 "FD_DEBUG": lambda: os.getenv("FD_DEBUG", "0"), # Number of days to keep fastdeploy logs. "FD_LOG_BACKUP_COUNT": lambda: os.getenv("FD_LOG_BACKUP_COUNT", "7"), # Model download source, can set "AISTUDIO", "MODELSCOPE" or "HUGGINGFACE". "FD_MODEL_SOURCE": lambda: os.getenv("FD_MODEL_SOURCE", "AISTUDIO"), # Model download cache directory. "FD_MODEL_CACHE": lambda: os.getenv("FD_MODEL_CACHE", None), # Maximum number of stop sequences. "FD_MAX_STOP_SEQS_NUM": lambda: os.getenv("FD_MAX_STOP_SEQS_NUM", "5"), # Maximum length of stop sequences. "FD_STOP_SEQS_MAX_LEN": lambda: os.getenv("FD_STOP_SEQS_MAX_LEN", "8"), # GPU devices that will be used. This is a string that # splited by comma, such as 0,1,2. "CUDA_VISIBLE_DEVICES": lambda: os.getenv("CUDA_VISIBLE_DEVICES", None), # Whether to use HuggingFace tokenizer. "FD_USE_HF_TOKENIZER": lambda: bool(int(os.getenv("FD_USE_HF_TOKENIZER", "0"))), # Set the high watermark (HWM) for receiving data during ZMQ initialization "FD_ZMQ_SNDHWM": lambda: os.getenv("FD_ZMQ_SNDHWM", 64000), # cache kv quant params directory "FD_CACHE_PARAMS": lambda: os.getenv("FD_CACHE_PARAMS", "none"), # Set attention backend. "NATIVE_ATTN", "APPEND_ATTN" # and "MLA_ATTN" can be set currently. "FD_ATTENTION_BACKEND": lambda: os.getenv("FD_ATTENTION_BACKEND", "APPEND_ATTN"), # Set sampling class. "base", "base_non_truncated", "air" and "rejection" can be set currently. "FD_SAMPLING_CLASS": lambda: os.getenv("FD_SAMPLING_CLASS", "base"), # Set moe backend."cutlass","marlin" and "triton" can be set currently. "FD_MOE_BACKEND": lambda: os.getenv("FD_MOE_BACKEND", "cutlass"), # Whether to use Machete for wint4 dense gemm. "FD_USE_MACHETE": lambda: os.getenv("FD_USE_MACHETE", "0"), # Set whether to disable recompute the request when the KV cache is full. "FD_DISABLED_RECOVER": lambda: os.getenv("FD_DISABLED_RECOVER", "0"), # Set triton kernel JIT compilation directory. "FD_TRITON_KERNEL_CACHE_DIR": lambda: os.getenv("FD_TRITON_KERNEL_CACHE_DIR", None), # Whether transition from standalone PD decoupling to centralized inference "FD_PD_CHANGEABLE": lambda: os.getenv("FD_PD_CHANGEABLE", "0"), # Whether to use fastsafetensor load weight (0 or 1) "FD_USE_FASTSAFETENSOR": lambda: bool(int(os.getenv("FD_USE_FASTSAFETENSOR", "0"))), # Whether to use DeepGemm for FP8 blockwise MoE. "FD_USE_DEEP_GEMM": lambda: bool(int(os.getenv("FD_USE_DEEP_GEMM", "0"))), # Whether to use aggregate send. "FD_USE_AGGREGATE_SEND": lambda: bool(int(os.getenv("FD_USE_AGGREGATE_SEND", "0"))), # Whether to open Trace. "TRACES_ENABLE": lambda: os.getenv("TRACES_ENABLE", "false"), # set traec Server name. "FD_SERVICE_NAME": lambda: os.getenv("FD_SERVICE_NAME", "FastDeploy"), # set traec host name. "FD_HOST_NAME": lambda: os.getenv("FD_HOST_NAME", "localhost"), # set traec exporter. "TRACES_EXPORTER": lambda: os.getenv("TRACES_EXPORTER", "console"), # set traec exporter_otlp_endpoint. "EXPORTER_OTLP_ENDPOINT": lambda: os.getenv("EXPORTER_OTLP_ENDPOINT"), # set traec exporter_otlp_headers. "EXPORTER_OTLP_HEADERS": lambda: os.getenv("EXPORTER_OTLP_HEADERS"), # enable kv cache block scheduler v1 (no need for kv_cache_ratio) "ENABLE_V1_KVCACHE_SCHEDULER": lambda: int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "1")), # set prealloc block num for decoder "FD_ENC_DEC_BLOCK_NUM": lambda: int(os.getenv("FD_ENC_DEC_BLOCK_NUM", "2")), # Whether to use PLUGINS. "FD_PLUGINS": lambda: None if "FD_PLUGINS" not in os.environ else os.environ["FD_PLUGINS"].split(","), # set trace attribute job_id. "FD_JOB_ID": lambda: os.getenv("FD_JOB_ID"), # support max connections "FD_SUPPORT_MAX_CONNECTIONS": lambda: int(os.getenv("FD_SUPPORT_MAX_CONNECTIONS", "1024")), # Offset for Tensor Parallelism group GID. "FD_TP_GROUP_GID_OFFSET": lambda: int(os.getenv("FD_TP_GROUP_GID_OFFSET", "1000")), # enable multi api server "FD_ENABLE_MULTI_API_SERVER": lambda: bool(int(os.getenv("FD_ENABLE_MULTI_API_SERVER", "0"))), "FD_FOR_TORCH_MODEL_FORMAT": lambda: bool(int(os.getenv("FD_FOR_TORCH_MODEL_FORMAT", "0"))), # force disable default chunked prefill "FD_DISABLE_CHUNKED_PREFILL": lambda: bool(int(os.getenv("FD_DISABLE_CHUNKED_PREFILL", "0"))), # Whether to use new get_output and save_output method (0 or 1) "FD_USE_GET_SAVE_OUTPUT_V1": lambda: bool(int(os.getenv("FD_USE_GET_SAVE_OUTPUT_V1", "0"))), # Whether to enable model cache feature "FD_ENABLE_MODEL_CACHE": lambda: bool(int(os.getenv("FD_ENABLE_MODEL_CACHE", "0"))), # enable internal module to access LLMEngine. "FD_ENABLE_INTERNAL_ADAPTER": lambda: int(os.getenv("FD_ENABLE_INTERNAL_ADAPTER", "0")), # LLMEngine recieve requests port, used when FD_ENABLE_INTERNAL_ADAPTER=1 "FD_ZMQ_RECV_REQUEST_SERVER_PORT": lambda: os.getenv("FD_ZMQ_RECV_REQUEST_SERVER_PORT", "8200"), # LLMEngine send response port, used when FD_ENABLE_INTERNAL_ADAPTER=1 "FD_ZMQ_SEND_RESPONSE_SERVER_PORT": lambda: os.getenv("FD_ZMQ_SEND_RESPONSE_SERVER_PORT", "8201"), # LLMEngine recieve control command port, used when FD_ENABLE_INTERNAL_ADAPTER=1 "FD_ZMQ_CONTROL_CMD_SERVER_PORTS": lambda: os.getenv("FD_ZMQ_CONTROL_CMD_SERVER_PORTS", "8202"), # Whether to enable cache task in decode node "FD_ENABLE_CACHE_TASK": lambda: os.getenv("FD_ENABLE_CACHE_TASK", "1"), # Batched token timeout in EP "FD_EP_BATCHED_TOKEN_TIMEOUT": lambda: float(os.getenv("FD_EP_BATCHED_TOKEN_TIMEOUT", "0.1")), # Max pre-fetch requests number in PD "FD_EP_MAX_PREFETCH_TASK_NUM": lambda: int(os.getenv("FD_EP_MAX_PREFETCH_TASK_NUM", "8")), "FD_ENABLE_MODEL_LOAD_CACHE": lambda: bool(int(os.getenv("FD_ENABLE_MODEL_LOAD_CACHE", "0"))), } def __getattr__(name: str): # lazy evaluation of environment variables if name in environment_variables: return environment_variables[name]() raise AttributeError(f"module {__name__!r} has no attribute {name!r}") def get_unique_name(self, name): """ Get unique name for config """ shm_uuid = os.getenv("SHM_UUID", "") return name + f"_{shm_uuid}" def __setattr__(name: str, value: Any): assert name in environment_variables environment_variables[name] = lambda: value def __dir__(): return list(environment_variables.keys())