""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import os from dataclasses import dataclass, field from typing import TYPE_CHECKING, List, Optional, Tuple import paddle from fastdeploy.model_executor.layers.attention.ops import ( append_attention, get_block_shape_and_split_kv_block, init_signal_layerwise, open_shm_and_get_meta_signal) if TYPE_CHECKING: from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.config import FDConfig from fastdeploy.model_executor.layers.attention.attention import Attention from fastdeploy.model_executor.layers.attention.base_attention_backend import ( AttentionBackend, AttentionMetadata) from fastdeploy.model_executor.layers.attention.utils import init_rank_and_device_id @dataclass class AppendAttentionMetadata(AttentionMetadata): """ AppendAttentionMetadata """ max_len_kv: paddle.Tensor = None set_max_lengths: int = -1 encoder_batch_ids: paddle.Tensor = None encoder_tile_ids_per_batch: paddle.Tensor = None encoder_num_blocks: paddle.Tensor = None kv_batch_ids: paddle.Tensor = None kv_tile_ids_per_batch: paddle.Tensor = None kv_num_blocks: paddle.Tensor = None decoder_batch_ids: paddle.Tensor = None decoder_tile_ids_per_batch: paddle.Tensor = None decoder_num_blocks: paddle.Tensor = None _dtype: paddle.dtype = paddle.bfloat16 encoder_max_partition_size: int = 32768 max_partition_size: int = 32768 block_tables: Optional[paddle.Tensor] = None rotary_embs: Optional[paddle.Tensor] = None attn_mask: Optional[paddle.Tensor] = None encoder_block_shape_q: Optional[paddle.Tensor] = None decoder_block_shape_q: Optional[paddle.Tensor] = None _fuse_kernel_compute_dtype: str = "bf16" # pd_disaggregation kv_signal_metadata: Optional[paddle.Tensor] = None kv_signal_data_list: List[paddle.Tensor] = field(default_factory=list) class AppendAttentionBackend(AttentionBackend): """ AppendAttentionBackend backend implementation. """ def __init__(self, fd_config: FDConfig, kv_num_heads: int, num_heads: int, head_dim: int) -> None: """ AppendAttentionBackend __init__ """ super().__init__() self.attention_metadata: AppendAttentionMetadata = None self.block_size: int = fd_config.parallel_config.block_size self.max_seq_len: int = fd_config.parallel_config.max_model_len self.rope_theta: float = (10000.0 if fd_config.model_config.rope_theta is None else fd_config.model_config.rope_theta) self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False) self.causal: bool = getattr(fd_config.model_config, "causal", True) self.speculative_method: str = fd_config.speculative_config.method self.use_speculate: bool = self.speculative_method is not None self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp" self.kv_num_heads: int = kv_num_heads self.num_heads: int = num_heads self.head_dim: int = fd_config.model_config.head_dim self.num_layers: int = fd_config.model_config.num_hidden_layers self.max_partition_size: int = int( os.getenv("FLAGS_max_partition_size", 32768)) # pd_disaggregation self.use_pd_disaggregation: int = int( os.getenv("FLAGS_use_pd_disaggregation", 0)) self.start_layer_index: int = fd_config.model_config.start_layer_index if fd_config.parallel_config.expert_parallel_rank is None: fd_config.parallel_config.expert_parallel_rank = 0 self.rank, self.device_id = init_rank_and_device_id(fd_config) def init_attention_metadata(self, forward_meta: ForwardMeta): """Initialize attntion metadata hence all layers in the forward pass can reuse it.""" metadata = AppendAttentionMetadata() metadata.encoder_block_shape_q = 64 metadata.decoder_block_shape_q = 16 metadata.max_partition_size = self.max_partition_size metadata.encoder_max_partition_size = self.max_seq_len metadata._dtype = paddle.get_default_dtype() if metadata._dtype == "bfloat16": metadata._fuse_kernel_compute_dtype = "bf16" elif metadata._dtype == "float16": metadata._fuse_kernel_compute_dtype = "fp16" elif metadata._dtype == "float32": metadata._fuse_kernel_compute_dtype = "fp32" metadata.block_tables = forward_meta.block_tables metadata.rotary_embs = forward_meta.rotary_embs metadata.attn_mask = forward_meta.attn_mask metadata.pre_caches_length = forward_meta.pre_caches_length ( metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, metadata.decoder_batch_ids, metadata.decoder_tile_ids_per_batch, metadata.decoder_num_blocks, metadata.max_len_kv, metadata.set_max_lengths, ) = get_block_shape_and_split_kv_block( forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.cum_offsets, metadata.encoder_block_shape_q, metadata.decoder_block_shape_q, self.num_heads // self.kv_num_heads, self.block_size, self.speculate_max_draft_token_num + 1, ) # pd_disaggregation metadata.kv_signal_data_list = [None] * self.num_layers if self.use_pd_disaggregation: metadata.kv_signal_metadata = open_shm_and_get_meta_signal( self.rank, int(self.device_id), self.keep_pd_step_flag) self.attention_metadata: AttentionMetadata = metadata forward_meta.decoder_batch_ids.copy_(metadata.decoder_batch_ids, False) forward_meta.decoder_tile_ids_per_batch.copy_( metadata.decoder_tile_ids_per_batch, False) def get_attntion_meta(self) -> AttentionMetadata: """get_attntion_meta""" return self.attention_metadata def get_kv_cache_shape( self, max_num_blocks: int, ) -> Tuple[int, int, int, int]: """ Caculate kv cache shape """ return (max_num_blocks, self.kv_num_heads, self.block_size, self.head_dim) def forward_mixed( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ) -> paddle.Tensor: """ forward_mixed """ metadata = self.attention_metadata if self.use_pd_disaggregation: metadata.kv_signal_data_list[ layer.layer_id] = init_signal_layerwise( metadata.kv_signal_metadata, layer.layer_id + self.start_layer_index) res = append_attention( qkv, forward_meta.caches[2 * layer.layer_id], forward_meta.caches[2 * layer.layer_id + 1], forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.padding_offset, forward_meta.cum_offsets, metadata.block_tables, metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, forward_meta.decoder_batch_ids, # from buffer forward_meta.decoder_tile_ids_per_batch, # from buffer metadata.decoder_num_blocks, metadata.set_max_lengths, metadata.max_len_kv, metadata.rotary_embs, metadata.attn_mask, layer.qkv_bias, layer.qkv_scale, getattr(layer, "cache_k_scale", None), getattr(layer, "cache_v_scale", None), getattr(layer, "cache_k_out_scale", None), getattr(layer, "cache_v_out_scale", None), getattr(layer, "cache_k_zp", None), getattr(layer, "cache_v_zp", None), layer.linear_shift, layer.linear_smooth, metadata.kv_signal_data_list[layer.layer_id], metadata._fuse_kernel_compute_dtype, getattr(layer, "cache_quant_type_str", "none"), layer.use_neox_rotary_style, self.rope_3d, self.max_seq_len, getattr(layer, "quant_max_bound", 0.0), getattr(layer, "quant_min_bound", 0.0), getattr(layer, "out_scale", -1.0), metadata.encoder_block_shape_q, metadata.decoder_block_shape_q, metadata.max_partition_size, metadata.encoder_max_partition_size, self.speculate_max_draft_token_num + 1, self.causal, self.speculative_method is not None, )[0] return res