// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "flags.h" #include "macros.h" #include "option.h" namespace vision = fastdeploy::vision; namespace benchmark = fastdeploy::benchmark; DEFINE_bool(no_nms, false, "Whether the model contains nms."); int main(int argc, char* argv[]) { #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option, argc, argv, true)) { return -1; } auto im = cv::imread(FLAGS_image); std::unordered_map config_info; benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path, &config_info); std::string model_name, params_name, config_name; auto model_format = fastdeploy::ModelFormat::PADDLE; if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name, &model_format, config_info)) { return -1; } auto model_file = FLAGS_model + sep + model_name; auto params_file = FLAGS_model + sep + params_name; auto config_file = FLAGS_model + sep + config_name; if (config_info["backend"] == "paddle_trt") { option.paddle_infer_option.collect_trt_shape = true; } if (config_info["backend"] == "paddle_trt" || config_info["backend"] == "trt") { option.trt_option.SetShape("im_shape",{1,2},{1,2},{1,2}); option.trt_option.SetShape("image", {1, 3, 320,320},{1, 3, 640, 640}, {1, 3, 1280, 1280}); option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2}, {1, 2}); } auto model_ppdet = vision::detection::PaddleDetectionModel( model_file, params_file, config_file, option, model_format); vision::DetectionResult res; if (config_info["precision_compare"] == "true") { // Run once at least model_ppdet.Predict(im, &res); // 1. Test result diff std::cout << "=============== Test result diff =================\n"; // Save result to -> disk. std::string det_result_path = "ppdet_result.txt"; benchmark::ResultManager::SaveDetectionResult(res, det_result_path); // Load result from <- disk. vision::DetectionResult res_loaded; benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path); // Calculate diff between two results. auto det_diff = benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); std::cout << "Boxes diff: mean=" << det_diff.boxes.mean << ", max=" << det_diff.boxes.max << ", min=" << det_diff.boxes.min << std::endl; std::cout << "Label_ids diff: mean=" << det_diff.labels.mean << ", max=" << det_diff.labels.max << ", min=" << det_diff.labels.min << std::endl; // 2. Test tensor diff std::cout << "=============== Test tensor diff =================\n"; std::vector batch_res; std::vector input_tensors, output_tensors; std::vector imgs; imgs.push_back(im); std::vector fd_images = vision::WrapMat(imgs); model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors); input_tensors[0].name = "image"; input_tensors[1].name = "scale_factor"; input_tensors[2].name = "im_shape"; input_tensors.pop_back(); model_ppdet.Infer(input_tensors, &output_tensors); model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res); // Save tensor to -> disk. auto& tensor_dump = output_tensors[0]; std::string det_tensor_path = "ppdet_tensor.txt"; benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path); // Load tensor from <- disk. fastdeploy::FDTensor tensor_loaded; benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path); // Calculate diff between two tensors. auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis( tensor_dump, tensor_loaded); std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean << ", max=" << det_tensor_diff.data.max << ", min=" << det_tensor_diff.data.min << std::endl; } // Run profiling if (FLAGS_no_nms) { model_ppdet.GetPostprocessor().ApplyNMS(); } BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res)) auto vis_im = vision::VisDetection(im, res,0.3); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; #endif return 0; }