""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import paddle from fastdeploy.config import FDConfig, GraphOptimizationConfig from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) @support_graph_optimization class TestCase1SubLayer1(paddle.nn.Layer): """Sub layer 1 of test case 1""" def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, _, forward_meta: ForwardMeta): """Sub layer1 forward pass""" output = paddle.add(forward_meta.input_ids, forward_meta.input_ids) print(" SubLayer1 Output: {output}") return output class TestCase1SubLayer2(paddle.nn.Layer): """ """ def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, _, forward_meta: ForwardMeta): """Sub layer2 forward pass""" x = paddle.ones_like(forward_meta.input_ids) y = paddle.ones_like(forward_meta.input_ids) output = x + y print(" SubLayer2 Output: {output}") return output @support_graph_optimization class TestCase1SubLayer3(paddle.nn.Layer): """ """ def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, _, forward_meta: ForwardMeta): """Sub layer3 forward pass""" output = paddle.add(forward_meta.input_ids, forward_meta.input_ids) print(" SubLayer3 Output: {output}") return output class TestModel1(paddle.nn.Layer): """Tast Model""" def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() self.fd_config = fd_config def forward(self, _, forward_meta: ForwardMeta): """Test model for ward pass""" self.sublayer1 = TestCase1SubLayer1(self.fd_config) self.sublayer2 = TestCase1SubLayer2(self.fd_config) self.sublayer3 = TestCase1SubLayer3(self.fd_config) # sublayer1 use cuda graph sub_meta1 = forward_meta sublayer1_output = self.sublayer1(_=None, forward_meta=sub_meta1) # sublayer2 not use cuda garph sub_meta2 = ForwardMeta(input_ids=sublayer1_output) sublayer2_output = self.sublayer2(_=None, forward_meta=sub_meta2) # sublayer3 use cuda graph sub_meta3 = ForwardMeta(input_ids=sublayer2_output) sublayer3_output = self.sublayer3(_=None, forward_meta=sub_meta3) return sublayer3_output @support_graph_optimization class TestModel2(paddle.nn.Layer): """Tast Model""" def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, _, forward_meta: ForwardMeta): """Test model for ward pass""" return forward_meta.input_ids + forward_meta.input_ids def run_test_case(): """Run test case""" # Set llm config1 graph_opt_config = GraphOptimizationConfig() graph_opt_config.use_cudagraph = True graph_opt_config.cudagraph_capture_sizes = [1] fd_config = FDConfig(graph_opt_config=graph_opt_config) # Run Test Case1 test_model1 = TestModel1(fd_config=fd_config) input_tensor1 = paddle.zeros([1, 8]) forward_meta1 = ForwardMeta(input_ids=input_tensor1) output1 = test_model1(_=None, forward_meta=forward_meta1) print(output1) # Run Test Case2 test_model2 = TestModel2(fd_config=fd_config) input_tensor2 = paddle.zeros([1, 8]) forward_meta2 = ForwardMeta(input_ids=input_tensor2) output2 = test_model2(_=None, forward_meta=forward_meta2) print(output2) if __name__ == "__main__": run_test_case()