// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #include "gflags/gflags.h" DEFINE_string(model, "", "Directory of the inference model."); DEFINE_string(image, "", "Path of the image file."); DEFINE_string(device, "cpu", "Type of inference device, support 'cpu' or 'gpu'."); DEFINE_string(backend, "default", "The inference runtime backend, support: ['default', 'ort', " "'paddle', 'ov', 'trt', 'paddle_trt']"); DEFINE_bool(use_fp16, false, "Whether to use FP16 mode, only support 'trt' and 'paddle_trt' backend"); void PrintUsage() { std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu] --backend " "[default|ort|paddle|ov|trt|paddle_trt] " "--use_fp16 false" << std::endl; std::cout << "Default value of device: cpu" << std::endl; std::cout << "Default value of backend: default" << std::endl; std::cout << "Default value of use_fp16: false" << std::endl; } bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) { if (FLAGS_device == "gpu") { option->UseGpu(); if (FLAGS_backend == "ort") { option->UseOrtBackend(); } else if (FLAGS_backend == "paddle") { option->UsePaddleInferBackend(); } else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") { option->UseTrtBackend(); option->SetTrtInputShape("images", {1, 3, 64, 64}); if (FLAGS_backend == "paddle_trt") { option->EnablePaddleToTrt(); } if (FLAGS_use_fp16) { option->EnableTrtFP16(); } } else if (FLAGS_backend == "default") { return true; } else { std::cout << "While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, " << FLAGS_backend << " is not supported." << std::endl; return false; } } else if (FLAGS_device == "cpu") { if (FLAGS_backend == "ort") { option->UseOrtBackend(); } else if (FLAGS_backend == "ov") { option->UseOpenVINOBackend(); } else if (FLAGS_backend == "paddle") { option->UsePaddleInferBackend(); } else if (FLAGS_backend == "default") { return true; } else { std::cout << "While inference with CPU, only support default/ort/ov/paddle now, " << FLAGS_backend << " is not supported." << std::endl; return false; } } else { std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl; return false; } return true; } int main(int argc, char* argv[]) { google::ParseCommandLineFlags(&argc, &argv, true); auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option)) { PrintUsage(); return -1; } auto model = fastdeploy::vision::headpose::FSANet(FLAGS_model, "", option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return -1; } auto im = cv::imread(FLAGS_image); auto im_bak = im.clone(); fastdeploy::vision::HeadPoseResult res; if (!model.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return -1; } std::cout << res.Str() << std::endl; auto vis_im = fastdeploy::vision::VisHeadPose(im_bak, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; return 0; }