""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/benchmarks/latency.py import argparse import dataclasses import json import time import numpy as np from tqdm import tqdm import fastdeploy.envs as envs from fastdeploy.engine.args_utils import EngineArgs from fastdeploy.entrypoints.cli.benchmark.base import BenchmarkSubcommandBase def add_cli_args(parser: argparse.ArgumentParser): parser.add_argument("--input-len", type=int, default=32) parser.add_argument("--output-len", type=int, default=128) parser.add_argument("--batch-size", type=int, default=8) parser.add_argument( "--n", type=int, default=1, help="Number of generated sequences per prompt.", ) parser.add_argument("--use-beam-search", action="store_true") parser.add_argument( "--num-iters-warmup", type=int, default=10, help="Number of iterations to run for warmup.", ) parser.add_argument("--num-iters", type=int, default=30, help="Number of iterations to run.") parser.add_argument( "--profile", action="store_true", help="profile the generation process of a single batch", ) parser.add_argument( "--output-json", type=str, default=None, help="Path to save the latency results in JSON format.", ) parser.add_argument( "--disable-detokenize", action="store_true", help=("Do not detokenize responses (i.e. do not include " "detokenization time in the latency measurement)"), ) parser = EngineArgs.add_cli_args(parser) # V1 enables prefix caching by default which skews the latency # numbers. We need to disable prefix caching by default. parser.set_defaults(enable_prefix_caching=False) def main(args: argparse.Namespace): if args.profile and not envs.VLLM_TORCH_PROFILER_DIR: raise OSError( "The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. " "Please set it to a valid path to use torch profiler." ) engine_args = EngineArgs.from_cli_args(args) # Lazy import to avoid importing LLM when the bench command is not selected. from fastdeploy import LLM, SamplingParams # NOTE(woosuk): If the request cannot be processed in a single batch, # the engine will automatically process the request in multiple batches. llm = LLM(**dataclasses.asdict(engine_args)) assert llm.llm_engine.cfg.max_model_len >= (args.input_len + args.output_len), ( "Please ensure that max_model_len is greater than" " the sum of input_len and output_len." ) sampling_params = SamplingParams( n=args.n, temperature=1.0, top_p=1.0, max_tokens=args.output_len, ) dummy_prompt_token_ids = np.random.randint(10000, size=(args.batch_size, args.input_len)) dummy_prompts = [{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()] def llm_generate(): llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False, stream=True) def run_to_completion(): start_time = time.perf_counter() llm_generate() end_time = time.perf_counter() latency = end_time - start_time return latency print("Warming up...") for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"): run_to_completion() if args.profile: print("Profiling...") run_to_completion() return # Benchmark. latencies = [] for _ in tqdm(range(args.num_iters), desc="Profiling iterations"): latencies.append(run_to_completion()) latencies = np.array(latencies) percentages = [10, 25, 50, 75, 90, 99] percentiles = np.percentile(latencies, percentages) print(f"Avg latency: {np.mean(latencies)} seconds") for percentage, percentile in zip(percentages, percentiles): print(f"{percentage}% percentile latency: {percentile} seconds") # Output JSON results if specified if args.output_json: results = { "avg_latency": np.mean(latencies), "latencies": latencies.tolist(), "percentiles": dict(zip(percentages, percentiles.tolist())), } with open(args.output_json, "w") as f: json.dump(results, f, indent=4) class BenchmarkLatencySubcommand(BenchmarkSubcommandBase): """The `latency` subcommand for fastdeploy bench.""" name = "latency" help = "Benchmark the latency of a single batch of requests." @classmethod def add_cli_args(cls, parser: argparse.ArgumentParser) -> None: add_cli_args(parser) @staticmethod def cmd(args: argparse.Namespace) -> None: main(args)