// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" // Test the corner cases of pow(x, y) for real types. template void pow_test() { const Scalar zero = Scalar(0); const Scalar eps = std::numeric_limits::epsilon(); const Scalar one = Scalar(1); const Scalar two = Scalar(2); const Scalar three = Scalar(3); const Scalar sqrt_half = Scalar(std::sqrt(0.5)); const Scalar sqrt2 = Scalar(std::sqrt(2)); const Scalar inf = std::numeric_limits::infinity(); const Scalar nan = std::numeric_limits::quiet_NaN(); const Scalar denorm_min = std::numeric_limits::denorm_min(); const Scalar min = (std::numeric_limits::min)(); const Scalar max = (std::numeric_limits::max)(); const Scalar max_exp = (static_cast(int(std::numeric_limits::max_exponent)) * Scalar(EIGEN_LN2)) / eps; const static Scalar abs_vals[] = {zero, denorm_min, min, eps, sqrt_half, one, sqrt2, two, three, max_exp, max, inf, nan}; const int abs_cases = 13; const int num_cases = 2 * abs_cases * 2 * abs_cases; // Repeat the same value to make sure we hit the vectorized path. const int num_repeats = 32; Array x(num_repeats, num_cases); Array y(num_repeats, num_cases); int count = 0; for (int i = 0; i < abs_cases; ++i) { const Scalar abs_x = abs_vals[i]; for (int sign_x = 0; sign_x < 2; ++sign_x) { Scalar x_case = sign_x == 0 ? -abs_x : abs_x; for (int j = 0; j < abs_cases; ++j) { const Scalar abs_y = abs_vals[j]; for (int sign_y = 0; sign_y < 2; ++sign_y) { Scalar y_case = sign_y == 0 ? -abs_y : abs_y; for (int repeat = 0; repeat < num_repeats; ++repeat) { x(repeat, count) = x_case; y(repeat, count) = y_case; } ++count; } } } } Array actual = x.pow(y); const Scalar tol = test_precision(); bool all_pass = true; for (int i = 0; i < 1; ++i) { for (int j = 0; j < num_cases; ++j) { Scalar e = static_cast(std::pow(x(i, j), y(i, j))); Scalar a = actual(i, j); bool fail = !(a == e) && !internal::isApprox(a, e, tol) && !((numext::isnan)(a) && (numext::isnan)(e)); all_pass &= !fail; if (fail) { std::cout << "pow(" << x(i, j) << "," << y(i, j) << ") = " << a << " != " << e << std::endl; } } } VERIFY(all_pass); } template void array(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename ArrayType::RealScalar RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows, cols, s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1) + s1); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows, cols, s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows, cols, s1) - m1); VERIFY_IS_APPROX((m1 * Scalar(2)) - s2, (m1 + m1) - ArrayType::Constant(rows, cols, s2)); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); m3 = m1; m2 = ArrayType::Random(rows, cols); m2 = (m2 == 0).select(1, m2); ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2); // reductions VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using std::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1 + m2).sum()), m1.abs().sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1 + m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX( m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows, cols, s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows, cols, 1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows, cols) = 1), ArrayType::Constant(rows, cols, 1)); typedef Array FixedArrayType; { FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100 * numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); } #if EIGEN_HAS_CXX11 { FixedArrayType f1{s1}; VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2{numext::real(s1)}; VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3{(int)100 * numext::real(s1)}; VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); f1.setRandom(); FixedArrayType f4{f1.data()}; VERIFY_IS_APPROX(f4, f1); } #endif // pow VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1, 2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1, 3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2 * m1, 3), 8 * m1.cube()); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(Eigen::pow(m1, exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(2 * m1, exponents), 4 * m1.square()); VERIFY_IS_APPROX((2 * m1).pow(exponents), 4 * m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1, 2 * exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2 * exponents), m1.square().square()); VERIFY_IS_APPROX(Eigen::pow(m1(0, 0), exponents), ArrayType::Constant(rows, cols, m1(0, 0) * m1(0, 0))); // Check possible conflicts with 1D ctor typedef Array OneDArrayType; { OneDArrayType o1(rows); VERIFY(o1.size() == rows); OneDArrayType o2(static_cast(rows)); VERIFY(o2.size() == rows); } #if EIGEN_HAS_CXX11 { OneDArrayType o1{rows}; VERIFY(o1.size() == rows); OneDArrayType o4{int(rows)}; VERIFY(o4.size() == rows); } #endif // Check possible conflicts with 2D ctor typedef Array TwoDArrayType; typedef Array ArrayType2; { TwoDArrayType o1(rows, cols); VERIFY(o1.rows() == rows); VERIFY(o1.cols() == cols); TwoDArrayType o2(static_cast(rows), static_cast(cols)); VERIFY(o2.rows() == rows); VERIFY(o2.cols() == cols); ArrayType2 o3(rows, cols); VERIFY(o3(0) == Scalar(rows) && o3(1) == Scalar(cols)); ArrayType2 o4(static_cast(rows), static_cast(cols)); VERIFY(o4(0) == Scalar(rows) && o4(1) == Scalar(cols)); } #if EIGEN_HAS_CXX11 { TwoDArrayType o1{rows, cols}; VERIFY(o1.rows() == rows); VERIFY(o1.cols() == cols); TwoDArrayType o2{int(rows), int(cols)}; VERIFY(o2.rows() == rows); VERIFY(o2.cols() == cols); ArrayType2 o3{rows, cols}; VERIFY(o3(0) == Scalar(rows) && o3(1) == Scalar(cols)); ArrayType2 o4{int(rows), int(cols)}; VERIFY(o4(0) == Scalar(rows) && o4(1) == Scalar(cols)); } #endif } template void comparisons(const ArrayType& m) { using std::abs; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs() == Scalar(0)).select(1, m4); VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows * cols > 1) { m3 = m1; m3(r, c) += 1; VERIFY(!(m1 < m3).all()); VERIFY(!(m1 > m3).all()); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); // comparisons array to scalar VERIFY((m1 != (m1(r, c) + 1)).any()); VERIFY((m1 > (m1(r, c) - 1)).any()); VERIFY((m1 < (m1(r, c) + 1)).any()); VERIFY((m1 == m1(r, c)).any()); // comparisons scalar to array VERIFY(((m1(r, c) + 1) != m1).any()); VERIFY(((m1(r, c) - 1) < m1).any()); VERIFY(((m1(r, c) + 1) > m1).any()); VERIFY((m1(r, c) == m1).any()); // test Select VERIFY_IS_APPROX((m1 < m2).select(m1, m2), m1.cwiseMin(m2)); VERIFY_IS_APPROX((m1 > m2).select(m1, m2), m1.cwiseMax(m2)); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff()) / Scalar(2); for (int j = 0; j < cols; ++j) for (int i = 0; i < rows; ++i) m3(i, j) = abs(m1(i, j)) < mid ? 0 : m1(i, j); VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)) .select(ArrayType::Zero(rows, cols), m1), m3); // shorter versions: VERIFY_IS_APPROX( (m1.abs() < ArrayType::Constant(rows, cols, mid)).select(0, m1), m3); VERIFY_IS_APPROX( (m1.abs() >= ArrayType::Constant(rows, cols, mid)).select(m1, 0), m3); // even shorter version: VERIFY_IS_APPROX((m1.abs() < mid).select(0, m1), m3); // count VERIFY(((m1.abs() + 1) > RealScalar(0.1)).count() == rows * cols); // and/or VERIFY((m1 < RealScalar(0) && m1 > RealScalar(0)).count() == 0); VERIFY((m1 < RealScalar(0) || m1 >= RealScalar(0)).count() == rows * cols); RealScalar a = m1.abs().mean(); VERIFY((m1 < -a || m1 > a).count() == (m1.abs() > a).count()); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols, rows).transpose()); VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { using std::abs; using std::sqrt; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs() == Scalar(0)).select(Scalar(1), m4); Scalar s1 = internal::random(); // these tests are mostly to check possible compilation issues with // free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); #if EIGEN_HAS_CXX11_MATH VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); #endif VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.rint(), rint(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); // avoid inf and NaNs so verification doesn't fail m3 = m4.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1) / sqrt(abs(m3))); VERIFY_IS_APPROX(rsqrt(m3), Scalar(1) / sqrt(abs(m3))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3)); VERIFY_IS_APPROX(m3.log2(), log2(m3)); VERIFY((!(m1 > m2) == (m1 <= m2)).all()); VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), Scalar(0.5) * (exp(m1) - exp(-m1))); VERIFY_IS_APPROX(cosh(m1), Scalar(0.5) * (exp(m1) + exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5) * (exp(m1) - exp(-m1))) / (Scalar(0.5) * (exp(m1) + exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (Scalar(1) / (Scalar(1) + exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1 < Scalar(0)).template cast()) * Scalar(std::acos(Scalar(-1)))); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)) .all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)) .all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)) .all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)) .all()); VERIFY((Eigen::isnan)((m1 * Scalar(0)) / Scalar(0)).all()); VERIFY((Eigen::isinf)(m4 / Scalar(0)).all()); VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * Scalar(0) / Scalar(0))) && (!(Eigen::isfinite)(m4 / Scalar(0)))) .all()); VERIFY_IS_APPROX(inverse(inverse(m4)), m4); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); VERIFY_IS_APPROX(m1 * m1.sign(), m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); VERIFY_IS_APPROX( numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX( numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); if (!NumTraits::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log(), log(abs(m3) + smallNumber)); VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log(), log1p(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3, RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3, RealScalar(-0.5)), m3.rsqrt()); // Avoid inf and NaN. m3 = (m1.square() < NumTraits::epsilon()).select(Scalar(1), m3); VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); pow_test(); VERIFY_IS_APPROX(log10(m3), log(m3) / numext::log(Scalar(10))); VERIFY_IS_APPROX(log2(m3), log(m3) / numext::log(Scalar(2))); // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); VERIFY_IS_APPROX(s1 / m1, s1 * m1.inverse()); // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs() == RealScalar(0)).select(RealScalar(1), m4.real()); m4.imag() = (m4.imag().abs() == RealScalar(0)).select(RealScalar(1), m4.imag()); Array m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i, j) = sqrt(m1(i, j)); // these tests are mostly to check possible compilation issues with // free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.log2(), log2(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); // Check for larger magnitude complex numbers that expm1 matches exp - 1. VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); VERIFY_IS_APPROX(sinh(m1), 0.5 * (exp(m1) - exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5 * (exp(m1) + exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5 * (exp(m1) - exp(-m1))) / (0.5 * (exp(m1) + exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i, j) = std::atan2(m1(i, j).imag(), m1(i, j).real()); VERIFY_IS_APPROX(arg(m1), m3); std::complex zero(0.0, 0.0); VERIFY((Eigen::isnan)(m1 * zero / zero).all()); #if EIGEN_COMP_MSVC // msvc complex division is not robust VERIFY((Eigen::isinf)(m4 / RealScalar(0)).all()); #else #if EIGEN_COMP_CLANG // clang's complex division is notoriously broken too if ((numext::isinf)(m4(0, 0) / RealScalar(0))) { #endif VERIFY((Eigen::isinf)(m4 / zero).all()); #if EIGEN_COMP_CLANG } else { VERIFY((Eigen::isinf)(m4.real() / zero.real()).all()); } #endif #endif // MSVC VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * zero / zero)) && (!(Eigen::isfinite)(m1 / zero))) .all()); VERIFY_IS_APPROX(inverse(inverse(m4)), m4); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real()) + square(m1.imag()))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1) / log(10)); VERIFY_IS_APPROX(log2(m1), log(m1) / log(2)); VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); // scalar by array division Scalar s1 = internal::random(); const RealScalar tiny = std::sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); VERIFY_IS_APPROX(s1 / m1, s1 * m1.inverse()); // check inplace transpose m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1); // Check vectorized inplace transpose. ArrayType m5 = ArrayType::Random(131, 131); ArrayType m6 = m5; m6.transposeInPlace(); VERIFY_IS_APPROX(m6, m5.transpose()); } template void min_max(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); // min/max with array Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff(); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(ArrayType::Constant(rows, cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows, cols, maxM1))); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(ArrayType::Constant(rows, cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows, cols, minM1))); // min/max with scalar input VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(minM1)); VERIFY_IS_APPROX(m1, (m1.min)(maxM1)); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(maxM1)); VERIFY_IS_APPROX(m1, (m1.max)(minM1)); // min/max with various NaN propagation options. if (m1.size() > 1 && !NumTraits::IsInteger) { m1(0, 0) = std::numeric_limits::quiet_NaN(); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY((numext::isnan)(maxM1)); VERIFY((numext::isnan)(minM1)); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY(!(numext::isnan)(maxM1)); VERIFY(!(numext::isnan)(minM1)); } } EIGEN_DECLARE_TEST(array_cwise) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(array(Array())); CALL_SUBTEST_2(array(Array22f())); CALL_SUBTEST_3(array(Array44d())); CALL_SUBTEST_4( array(ArrayXXcf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_5( array(ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6( array(ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6(array(Array( internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(comparisons(Array())); CALL_SUBTEST_2(comparisons(Array22f())); CALL_SUBTEST_3(comparisons(Array44d())); CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(min_max(Array())); CALL_SUBTEST_2(min_max(Array22f())); CALL_SUBTEST_3(min_max(Array44d())); CALL_SUBTEST_5( min_max(ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6( min_max(ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(array_real(Array())); CALL_SUBTEST_2(array_real(Array22f())); CALL_SUBTEST_3(array_real(Array44d())); CALL_SUBTEST_5( array_real(ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(array_real(Array())); CALL_SUBTEST_8(array_real(Array())); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4(array_complex( ArrayXXcf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, int>::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, float>::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); typedef CwiseUnaryOp, ArrayXd> Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); }