# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd from fastdeploy import ModelFormat import cv2 import os import numpy as np import runtime_config as rc import pickle def test_segmentation_ppliteseg(): pp_liteseg_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_test.tgz" fd.download_and_decompress(pp_liteseg_model_url, "resources") model_path = "./resources/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_test" # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "deploy.yaml") image_file_1 = os.path.join(model_path, "cityscapes_demo_1.png") image_file_2 = os.path.join(model_path, "cityscapes_demo_2.png") result_file_1 = os.path.join(model_path, "ppliteseg_result1.pkl") result_file_2 = os.path.join(model_path, "ppliteseg_result2.pkl") model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=rc.test_option) model.postprocessor.store_score_map = True im1 = cv2.imread(image_file_1) im2 = cv2.imread(image_file_2) with open(result_file_1, "rb") as f: expect1 = pickle.load(f) with open(result_file_2, "rb") as f: expect2 = pickle.load(f) for i in range(3): # test single predict result1 = model.predict(im1) result2 = model.predict(im2) diff_label_map_1 = np.fabs( np.array(result1.label_map) - np.array(expect1["label_map"])) diff_label_map_2 = np.fabs( np.array(result2.label_map) - np.array(expect2["label_map"])) diff_score_map_1 = np.fabs( np.array(result1.score_map) - np.array(expect1["score_map"])) diff_score_map_2 = np.fabs( np.array(result2.score_map) - np.array(expect2["score_map"])) thres = 1e-05 assert diff_label_map_1.max( ) < thres, "The label_map diff is %f, which is bigger than %f" % ( diff_label_map_1.max(), thres) assert diff_score_map_1.max( ) < thres, "The score map diff is %f, which is bigger than %f" % ( diff_score_map_1.max(), thres) assert diff_label_map_2.max( ) < thres, "The label_map diff is %f, which is bigger than %f" % ( diff_label_map_2.max(), thres) assert diff_score_map_2.max( ) < thres, "The score map diff is %f, which is bigger than %f" % ( diff_score_map_2.max(), thres) print("Single image No diff") # test batch predict results = model.batch_predict([im1, im2]) result1 = results[0] result2 = results[1] diff_label_map_1 = np.fabs( np.array(result1.label_map) - np.array(expect1["label_map"])) diff_label_map_2 = np.fabs( np.array(result2.label_map) - np.array(expect2["label_map"])) diff_score_map_1 = np.fabs( np.array(result1.score_map) - np.array(expect1["score_map"])) diff_score_map_2 = np.fabs( np.array(result2.score_map) - np.array(expect2["score_map"])) thres = 1e-05 assert diff_label_map_1.max( ) < thres, "The label_map diff is %f, which is bigger than %f" % ( diff_label_map_1.max(), thres) assert diff_score_map_1.max( ) < thres, "The score map diff is %f, which is bigger than %f" % ( diff_score_map_1.max(), thres) assert diff_label_map_2.max( ) < thres, "The label_map diff is %f, which is bigger than %f" % ( diff_label_map_2.max(), thres) assert diff_score_map_2.max( ) < thres, "The score map diff is %f, which is bigger than %f" % ( diff_score_map_2.max(), thres) print("Batch images No diff") def test_segmentation_ppliteseg_runtime(): pp_liteseg_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_test.tgz" fd.download_and_decompress(pp_liteseg_model_url, "resources") model_path = "./resources/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_test" # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "deploy.yaml") image_file_1 = os.path.join(model_path, "cityscapes_demo_1.png") result_file_1 = os.path.join(model_path, "ppliteseg_result1.pkl") preprocessor = fd.vision.segmentation.PaddleSegPreprocessor(config_file) postprocessor = fd.vision.segmentation.PaddleSegPostprocessor(config_file) postprocessor.store_score_map = True rc.test_option.set_model_path( model_file, params_file, model_format=ModelFormat.PADDLE) rc.test_option.use_paddle_backend() runtime = fd.Runtime(rc.test_option) with open(result_file_1, "rb") as f: expect1 = pickle.load(f) im1 = cv2.imread(image_file_1) print(image_file_1) for i in range(3): # test runtime input_tensors, ims_info = preprocessor.run([im1]) output_tensors = runtime.infer({"x": input_tensors[0]}) results = postprocessor.run(output_tensors, ims_info) result1 = results[0] diff_label_map_1 = np.fabs( np.array(result1.label_map) - np.array(expect1["label_map"])) diff_score_map_1 = np.fabs( np.array(result1.score_map) - np.array(expect1["score_map"])) thres = 1e-05 assert diff_label_map_1.max( ) < thres, "The label_map diff is %f, which is bigger than %f" % ( diff_label_map_1.max(), thres) assert diff_score_map_1.max( ) < thres, "The score map diff is %f, which is bigger than %f" % ( diff_score_map_1.max(), thres) print("Runtime images No diff") if __name__ == "__main__": test_segmentation_ppliteseg() test_segmentation_ppliteseg_runtime()