# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import pickle import numpy as np import runtime_config as rc def test_detection_picodet(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" result_url = "https://bj.bcebos.com/fastdeploy/tests/data/picodet_baseline.pkl" fd.download_and_decompress(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url, "resources") model_path = "resources/picodet_l_320_coco_lcnet" model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "infer_cfg.yml") rc.test_option.use_paddle_backend() model = fd.vision.detection.PicoDet( model_file, params_file, config_file, runtime_option=rc.test_option) preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file) postprocessor = fd.vision.detection.PaddleDetPostprocessor() rc.test_option.set_model_path(model_file, params_file) runtime = fd.Runtime(rc.test_option); # compare diff im1 = cv2.imread("./resources/000000014439.jpg") for i in range(2): result = model.predict(im1) with open("resources/picodet_baseline.pkl", "rb") as f: boxes, scores, label_ids = pickle.load(f) pred_boxes = np.array(result.boxes) pred_scores = np.array(result.scores) pred_label_ids = np.array(result.label_ids) diff_boxes = np.fabs(boxes - pred_boxes) diff_scores = np.fabs(scores - pred_scores) diff_label_ids = np.fabs(label_ids - pred_label_ids) print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max()) score_threshold = 0.0 assert diff_boxes[scores > score_threshold].max( ) < 1e-02, "There's diff in boxes." assert diff_scores[scores > score_threshold].max( ) < 1e-04, "There's diff in scores." assert diff_label_ids[scores > score_threshold].max( ) < 1e-04, "There's diff in label_ids." # result = model.predict(im1) # with open("picodet_baseline.pkl", "wb") as f: # pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f) def test_detection_picodet1(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" result_url = "https://bj.bcebos.com/fastdeploy/tests/data/picodet_baseline.pkl" fd.download_and_decompress(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url, "resources") model_path = "resources/picodet_l_320_coco_lcnet" model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "infer_cfg.yml") preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file) postprocessor = fd.vision.detection.PaddleDetPostprocessor() rc.test_option.set_model_path(model_file, params_file) runtime = fd.Runtime(rc.test_option); # compare diff im1 = cv2.imread("./resources/000000014439.jpg") for i in range(2): input_tensors = preprocessor.run([im1]) output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1]}) results = postprocessor.run(output_tensors) result = results[0] with open("resources/picodet_baseline.pkl", "rb") as f: boxes, scores, label_ids = pickle.load(f) pred_boxes = np.array(result.boxes) pred_scores = np.array(result.scores) pred_label_ids = np.array(result.label_ids) diff_boxes = np.fabs(boxes - pred_boxes) diff_scores = np.fabs(scores - pred_scores) diff_label_ids = np.fabs(label_ids - pred_label_ids) print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max()) with open("resources/dump_result.pkl", "wb") as f: pickle.dump([pred_boxes, pred_scores, pred_label_ids], f) score_threshold = 0.0 assert diff_boxes[scores > score_threshold].max( ) < 1e-01, "There's diff in boxes." assert diff_scores[scores > score_threshold].max( ) < 1e-03, "There's diff in scores." assert diff_label_ids[scores > score_threshold].max( ) < 1e-04, "There's diff in label_ids." if __name__ == "__main__": test_detection_picodet() test_detection_picodet1()