# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from abc import ABC, abstractmethod from ... import c_lib_wrap as C class ProcessorManager: def __init__(self): self._manager = None def run(self, input_ims): """Process input image :param: input_ims: (list of numpy.ndarray) The input images :return: list of FDTensor """ return self._manager.run(input_ims) def use_cuda(self, enable_cv_cuda=False, gpu_id=-1): """Use CUDA processors :param: enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only :param: gpu_id: GPU device id """ return self._manager.use_cuda(enable_cv_cuda, gpu_id) class PyProcessorManager(ABC): """ PyProcessorManager is used to define a customized processor in python """ def __init__(self): self._manager = C.vision.processors.ProcessorManager() def use_cuda(self, enable_cv_cuda=False, gpu_id=-1): """Use CUDA processors :param: enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only :param: gpu_id: GPU device id """ return self._manager.use_cuda(enable_cv_cuda, gpu_id) def __call__(self, images): image_batch = C.vision.FDMatBatch() image_batch.from_mats(images) self._manager.pre_apply(image_batch) outputs = self.apply(image_batch) self._manager.post_apply() return outputs @abstractmethod def apply(self, image_batch): print("This function has to be implemented.") return []