// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file squeeze_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/squeeze.h" #include "poros/util/test_util.h" static void squeeze_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, std::vector shape){ std::vector input_data; input_data.push_back(at::randn(shape, {at::kCUDA})); baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } static std::string gen_squeeze_one_input_schema_graph(const std::string& op) { return R"IR( graph(%0 : Tensor): %2 : Tensor = aten::)IR" + op + R"IR((%0) %3 : Tensor = aten::relu(%2) return (%3))IR"; } TEST(Converters, ATenSqueezeOneInputConvertsCorrectly) { // aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_one_input_schema_graph("squeeze"); baidu::mirana::poros::SqueezeConverter squeezeconverter; squeeze_test_helper(graph_IR, &squeezeconverter, {4, 1, 3}); squeeze_test_helper(graph_IR, &squeezeconverter, {4, 1, 1, 5}); } static std::string gen_squeeze_graph(const std::string& op, const std::string& dim) { return R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=)IR" + dim + R"IR(]() %2 : Tensor = aten::)IR" + op + R"IR((%0, %1) %3 : Tensor = aten::relu(%2) return (%3))IR"; } TEST(Converters, ATenSqueezeConvertsCorrectly) { // aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("squeeze", "1"); baidu::mirana::poros::SqueezeConverter squeezeconverter; squeeze_test_helper(graph_IR, &squeezeconverter, {4, 1, 3}); squeeze_test_helper(graph_IR, &squeezeconverter, {4, 2, 3}); } TEST(Converters, ATenSqueezeNegtiveConvertsCorrectly) { // aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("squeeze", "-1"); baidu::mirana::poros::SqueezeConverter squeezeconverter; squeeze_test_helper(graph_IR, &squeezeconverter, {4, 3, 1}); squeeze_test_helper(graph_IR, &squeezeconverter, {4, 2, 3}); } TEST(Converters, ATenUnSqueezeConvertsCorrectly) { // aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("unsqueeze", "1"); baidu::mirana::poros::UnSqueezeConverter unsqueezeconverter; squeeze_test_helper(graph_IR, &unsqueezeconverter, {4, 3, 2}); } TEST(Converters, ATenUnSqueezeNegtiveConvertsCorrectly) { // aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("unsqueeze", "-1"); baidu::mirana::poros::UnSqueezeConverter unsqueezeconverter; squeeze_test_helper(graph_IR, &unsqueezeconverter, {4, 3, 2}); } static void squeeze_dy_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenSqueezeOneInputDynamicConvertsCorrectly) { // aten::squeeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_one_input_schema_graph("squeeze"); baidu::mirana::poros::SqueezeConverter squeezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40, 1, 1, 60}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({20, 1, 1, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20, 1, 1, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({20, 1, 1, 40}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &squeezeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenUnSqueezeDynamicConvertsCorrectly) { // aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("unsqueeze", "2"); baidu::mirana::poros::UnSqueezeConverter unsqueezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40, 50, 60}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({20, 30, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20, 30, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({20, 30, 40}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &unsqueezeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenUnSqueezeInputSingleDimDynamicConvertsCorrectly) { // aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("unsqueeze", "0"); baidu::mirana::poros::UnSqueezeConverter unsqueezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({20}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({20}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &unsqueezeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenUnSqueezeDynamicNegtiveDimConvertsCorrectly) { // aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("unsqueeze", "-1"); baidu::mirana::poros::UnSqueezeConverter unsqueezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40, 50, 60}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({20, 30, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20, 30, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({20, 30, 40}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &unsqueezeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenSqueezeDynamicConvertsCorrectly) { // aten::squeeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("squeeze", "1"); baidu::mirana::poros::SqueezeConverter squeezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40, 1, 60}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({20, 1, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20, 1, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({20, 1, 40}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &squeezeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenSqueezeDynamicNegtiveDimConvertsCorrectly) { // aten::squeeze(Tensor(a) self, int dim) -> Tensor(a) const auto graph_IR = gen_squeeze_graph("squeeze", "-1"); baidu::mirana::poros::SqueezeConverter squeezeconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({1, 60, 1}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({1, 40, 1}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({1, 40, 1}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({1, 40, 1}, {at::kCUDA})); squeeze_dy_test_helper(graph_IR, &squeezeconverter, input_data, true, &prewarm_data); }