// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file reflection_pad_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/reflection_pad.h" #include "poros/util/test_util.h" static void reflection_pad_test_helper(const std::string& graph_IR, std::vector shape, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { std::vector input_data; input_data.push_back(at::randn(shape, {at::kCUDA})); baidu::mirana::poros::ReflectionPadConverter reflectionpadconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &reflectionpadconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } static std::string gen_reflection_pad_graph(const std::string& op, const std::string& padding) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + padding + R"IR(]]() %2 : Tensor = aten::)IR" + op + R"IR((%0, %1) return (%2))IR"; } TEST(Converters, ATenReflectionPad1DConvertsCorrectly) { // aten::reflection_pad1d(Tensor self, int[2] padding) -> Tensor const auto graph_IR = gen_reflection_pad_graph("reflection_pad1d", "2, 2"); reflection_pad_test_helper(graph_IR, {2, 5}); } TEST(Converters, ATenReflectionPad2DConvertsCorrectly) { // aten::reflection_pad2d(Tensor self, int[4] padding) -> Tensor const auto graph_IR = gen_reflection_pad_graph("reflection_pad2d", "1, 1, 2, 3"); reflection_pad_test_helper(graph_IR, {3, 4, 3}); } TEST(Converters, ATenReflectionPad1DDynamicConvertsCorrectly) { // aten::reflection_pad1d(Tensor self, int[2] padding) -> Tensor const auto graph_IR = gen_reflection_pad_graph("reflection_pad1d", "2, 3"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({3, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 5}, {at::kCUDA})); reflection_pad_test_helper(graph_IR, {2, 5}, true, &prewarm_data); } TEST(Converters, ATenReflectionPad2DDynamicConvertsCorrectly) { // aten::reflection_pad2d(Tensor self, int[4] padding) -> Tensor const auto graph_IR = gen_reflection_pad_graph("reflection_pad2d", "1, 1, 2, 3"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 5, 4}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({3, 4, 3}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({3, 4, 3}, {at::kCUDA})); reflection_pad_test_helper(graph_IR, {3, 4, 3}, true, &prewarm_data); } TEST(Converters, ATenReflectionPad1DDynamicscalarinputConvertsCorrectly) { // aten::reflection_pad2d(Tensor self, int[4] padding) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=1]() %2 : int = prim::Constant[value=1]() %3 : int = prim::Constant[value=2]() %4 : int = aten::size(%0, %1) %5 : float = aten::div(%4, %3) %6 : int = aten::floor(%5) %7 : int[] = prim::ListConstruct(%1, %6) %8 : Tensor = aten::reflection_pad1d(%0, %7) return (%8))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({3, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 5}, {at::kCUDA})); reflection_pad_test_helper(graph_IR, {2, 7}, true, &prewarm_data); } TEST(Converters, ATenReflectionPad2DDynamicscalarinputConvertsCorrectly) { // aten::reflection_pad2d(Tensor self, int[4] padding) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=1]() %2 : int = prim::Constant[value=1]() %3 : int = prim::Constant[value=2]() %4 : int = aten::size(%0, %1) %5 : float = aten::div(%4, %3) %6 : int = aten::floor(%5) %7 : int[] = prim::ListConstruct(%1, %2, %3, %6) %8 : Tensor = aten::reflection_pad2d(%0, %7) return (%8))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 7, 4}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({3, 5, 3}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({3, 5, 3}, {at::kCUDA})); reflection_pad_test_helper(graph_IR, {3, 5, 3}, true, &prewarm_data); }