// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file reduce_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/reduce.h" #include "poros/util/test_util.h" static void reduce_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, std::vector shape1, bool single_input = true, std::vector shape2 = {4, 4}, bool single_output = true, bool int_flag = false){ std::vector input_data; if(int_flag) { auto options_pyt_long = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kLong); input_data.push_back(at::randint(1000, shape1, options_pyt_long)); } else { input_data.push_back(at::randn(shape1, {at::kCUDA})); } if (!single_input){ input_data.push_back(at::randn(shape2, {at::kCUDA})); } baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); if (single_output) { ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); } else { ASSERT_EQ(2, graph_output.size()); ASSERT_EQ(2, poros_output.size()); } for (size_t i = 0; i < graph_output.size(); i++) { ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[i], poros_output[i], 2e-6)); } } static std::string gen_basic_graph(const std::string& op) { return R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : Tensor = aten::)IR" + op + R"IR((%0, %1) return (%2))IR"; } static std::string gen_min_max_graph(const std::string& op) { return R"IR( graph(%0 : Tensor): %1 : Tensor = aten::)IR" + op + R"IR((%0) return (%1))IR"; } static std::string gen_min_max_other_graph(const std::string& op) { return R"IR( graph(%0 : Tensor, %1 : Tensor): %1 : Tensor = aten::)IR" + op + R"IR((%0, %1) return (%1))IR"; } static std::string gen_min_max_dim_graph(const std::string& op, const std::string& dim) { return R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=)IR" + dim + R"IR(]() %2 : bool = prim::Constant[value=0]() %3 : Tensor, %4 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2) return (%3, %4))IR"; } static std::string gen_argmin_argmax_graph(const std::string& op, const std::string& dim, const std::string& keepdim) { return R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=)IR" + dim + R"IR(]() %2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]() %3 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2) return (%3))IR"; } static std::string gen_argmin_argmax_dim_none_graph(const std::string& op, const std::string& keepdim) { return R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]() %3 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2) return (%3))IR"; } static std::string gen_mean_sum_dim_graph(const std::string& op, const std::string& dim, const std::string& keepdim) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + dim + R"IR(]]() %2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]() %3 : None = prim::Constant() %4 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2, %3) return (%4))IR"; } static std::string gen_prod_dim_graph(const std::string& op, const std::string& dim, const std::string& keepdim) { return R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=)IR" + dim + R"IR(]() %2 : bool = prim::Constant[value=)IR" + keepdim + R"IR(]() %3 : None = prim::Constant() %4 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2, %3) return (%4))IR"; } TEST(Converters, ATenMeanConvertsCorrectly) { // aten::mean(Tensor self, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_basic_graph("mean"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4}); } TEST(Converters, ATenMeanDimConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "1", "0"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenMeanMltiDimsConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "0, 1", "0"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenMeanKeepDimsConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "1", "1"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4}); } TEST(Converters, ATenMeanDimNegOneIndexConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "-1", "0"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenMeanDimNegOneIndexKeepDimsConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "-1", "1"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenMeanDimNegIndexConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "-2", "0"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenMeanDimNegIndexKeepDimsConvertsCorrectly) { // aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("mean", "-2", "1"); baidu::mirana::poros::MeanConverter meanconverter; reduce_test_helper(graph_IR, &meanconverter, {4, 4, 4}); } TEST(Converters, ATenSumConvertsCorrectly) { // aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_basic_graph("sum"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4}); } TEST(Converters, ATenSumDimConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "1", "0"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenSumMltiDimsConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "0, 1", "0"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenSumKeepDimsConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "1", "1"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4}); } TEST(Converters, ATenSumDimNegOneIndexConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "-1", "0"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenSumDimNegOneIndexKeepDimsConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "-1", "1"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenSumDimNegIndexConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "-2", "0"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenSumDimNegIndexKeepDimsConvertsCorrectly) { // aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_mean_sum_dim_graph("sum", "-2", "1"); baidu::mirana::poros::SumConverter sumconverter; reduce_test_helper(graph_IR, &sumconverter, {4, 4, 4}); } TEST(Converters, ATenProdConvertsCorrectly) { // aten::prod(Tensor self, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_basic_graph("prod"); baidu::mirana::poros::ProdConverter prodconverter; reduce_test_helper(graph_IR, &prodconverter, {4, 4}); } TEST(Converters, ATenProdDimConvertsCorrectly) { // aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_prod_dim_graph("prod", "1", "0"); baidu::mirana::poros::ProdConverter prodconverter; reduce_test_helper(graph_IR, &prodconverter, {4, 4, 4}); } TEST(Converters, ATenProdKeepDimsConvertsCorrectly) { // aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_prod_dim_graph("prod", "1", "1"); baidu::mirana::poros::ProdConverter prodconverter; reduce_test_helper(graph_IR, &prodconverter, {4, 4}); } TEST(Converters, ATenMaxConvertsCorrectly) { // aten::max(Tensor self) -> Tensor const auto graph_IR = gen_min_max_graph("max"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 4}); } TEST(Converters, ATenMinConvertsCorrectly) { // aten::min(Tensor self) -> Tensor const auto graph_IR = gen_min_max_graph("min"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 4}); } TEST(Converters, ATenMaxOtherConvertsCorrectly) { // aten::max.other(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_min_max_other_graph("max"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 4}, false, {4, 4}); reduce_test_helper(graph_IR, &maxminconverter, {3, 4}, false, {4}); reduce_test_helper(graph_IR, &maxminconverter, {4}, false, {3, 4}); reduce_test_helper(graph_IR, &maxminconverter, {4, 1}, false, {1, 4}); reduce_test_helper(graph_IR, &maxminconverter, {3, 4, 3}, false, {4, 3}); reduce_test_helper(graph_IR, &maxminconverter, {4, 3}, false, {3, 4, 3}); } TEST(Converters, ATenMinOtherConvertsCorrectly) { // aten::min.other(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_min_max_other_graph("min"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 4}, false, {4, 4}); reduce_test_helper(graph_IR, &maxminconverter, {3, 4}, false, {4}); reduce_test_helper(graph_IR, &maxminconverter, {4}, false, {3, 4}); reduce_test_helper(graph_IR, &maxminconverter, {4, 1}, false, {1, 4}); reduce_test_helper(graph_IR, &maxminconverter, {3, 4, 3}, false, {4, 3}); reduce_test_helper(graph_IR, &maxminconverter, {4, 3}, false, {3, 4, 3}); } TEST(Converters, ATenMaxDimConvertsCorrectly) { // aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) const auto graph_IR = gen_min_max_dim_graph("max", "0"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR2 = gen_min_max_dim_graph("max", "1"); reduce_test_helper(graph_IR2, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR3 = gen_min_max_dim_graph("max", "-1"); reduce_test_helper(graph_IR3, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR4 = gen_min_max_dim_graph("max", "-1"); reduce_test_helper(graph_IR4, &maxminconverter, {4, 3}, true, {}, false); } TEST(Converters, ATenMinDimConvertsCorrectly) { // aten::min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) const auto graph_IR = gen_min_max_dim_graph("min", "0"); baidu::mirana::poros::MaxMinConverter maxminconverter; reduce_test_helper(graph_IR, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR2 = gen_min_max_dim_graph("min", "1"); reduce_test_helper(graph_IR2, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR3 = gen_min_max_dim_graph("min", "-1"); reduce_test_helper(graph_IR3, &maxminconverter, {4, 5, 3}, true, {}, false); const auto graph_IR4 = gen_min_max_dim_graph("min", "-1"); reduce_test_helper(graph_IR4, &maxminconverter, {4, 3}, true, {}, false); } TEST(Converters, ATenMaxDimDynamicConvertsCorrectly) { // aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) const auto graph_IR = gen_min_max_dim_graph("max", "0"); baidu::mirana::poros::MaxMinConverter maxminconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({3, 4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({3, 4, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({3, 4, 5}, {at::kCUDA})); baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &maxminconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(2, graph_output.size()); ASSERT_EQ(2, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[1], poros_output[1], 2e-6)); } TEST(Converters, ATenMinDimDynamicConvertsCorrectly) { // aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) const auto graph_IR = gen_min_max_dim_graph("min", "1"); baidu::mirana::poros::MaxMinConverter maxminconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({3, 4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({3, 4, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({3, 4, 5}, {at::kCUDA})); baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &maxminconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(2, graph_output.size()); ASSERT_EQ(2, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[1], poros_output[1], 2e-6)); } TEST(Converters, ArgmaxConvertersCorrectly) { // aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor) baidu::mirana::poros::ArgmaxArgminConverter argmaxargminconverter; const auto graph_IR1 = gen_argmin_argmax_graph("argmax", "0", "0"); reduce_test_helper(graph_IR1, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR2 = gen_argmin_argmax_graph("argmax", "1", "0"); reduce_test_helper(graph_IR2, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR3 = gen_argmin_argmax_graph("argmax", "2", "0"); reduce_test_helper(graph_IR3, &argmaxargminconverter, {4, 4, 6}, true, {}, true); const auto graph_IR4 = gen_argmin_argmax_graph("argmax", "3", "0"); reduce_test_helper(graph_IR4, &argmaxargminconverter, {4, 4, 6, 8}, true, {}, true); const auto graph_IR5 = gen_argmin_argmax_graph("argmax", "0", "1"); reduce_test_helper(graph_IR5, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR6 = gen_argmin_argmax_graph("argmax", "1", "1"); reduce_test_helper(graph_IR6, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR7 = gen_argmin_argmax_graph("argmax", "-1", "1"); reduce_test_helper(graph_IR7, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR8 = gen_argmin_argmax_graph("argmax", "-1", "0"); reduce_test_helper(graph_IR8, &argmaxargminconverter, {4, 4}, true, {}, true); // test input tensor of int type const auto graph_IR9 = gen_argmin_argmax_graph("argmax", "1", "0"); reduce_test_helper(graph_IR9, &argmaxargminconverter, {4, 4}, true, {}, true, true); const auto graph_IR10 = gen_argmin_argmax_graph("argmax", "-1", "0"); reduce_test_helper(graph_IR10, &argmaxargminconverter, {4, 4}, true, {}, true, true); } TEST(Converters, ArgminConvertersCorrectly) { // aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor) baidu::mirana::poros::ArgmaxArgminConverter argmaxargminconverter; const auto graph_IR1 = gen_argmin_argmax_graph("argmin", "0", "0"); reduce_test_helper(graph_IR1, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR2 = gen_argmin_argmax_graph("argmin", "1", "0"); reduce_test_helper(graph_IR2, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR3 = gen_argmin_argmax_graph("argmin", "2", "0"); reduce_test_helper(graph_IR3, &argmaxargminconverter, {4, 4, 6}, true, {}, true); const auto graph_IR4 = gen_argmin_argmax_graph("argmin", "3", "0"); reduce_test_helper(graph_IR4, &argmaxargminconverter, {4, 4, 6, 8}, true, {}, true); const auto graph_IR5 = gen_argmin_argmax_graph("argmin", "0", "1"); reduce_test_helper(graph_IR5, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR6 = gen_argmin_argmax_graph("argmin", "1", "1"); reduce_test_helper(graph_IR6, &argmaxargminconverter, {4, 4}, true, {}, true); const auto graph_IR7 = gen_argmin_argmax_graph("argmin", "-1", "1"); reduce_test_helper(graph_IR7, &argmaxargminconverter, {4, 4}, true, {}, true); // test input tensor of int type const auto graph_IR9 = gen_argmin_argmax_graph("argmin", "1", "0"); reduce_test_helper(graph_IR9, &argmaxargminconverter, {4, 4}, true, {}, true, true); const auto graph_IR10 = gen_argmin_argmax_graph("argmin", "-1", "0"); reduce_test_helper(graph_IR10, &argmaxargminconverter, {4, 4}, true, {}, true, true); } // TODO: to imp dim=None // TEST(Converters, ArgmaxNoneDimConvertersCorrectly) { // // aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor) // baidu::mirana::poros::ArgmaxArgminConverter argmaxargminconverter; // const auto graph_IR1 = gen_argmin_argmax_dim_none_graph("argmax", "0"); // reduce_test_helper(graph_IR1, &argmaxargminconverter, {4, 4}, true, {}, true); // }