// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file mul_div_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/mul_div.h" #include "poros/util/test_util.h" static void mul_div_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, bool singleInput, std::vector shape1 = {5}, std::vector shape2 = {5}) { std::vector input_data; input_data.push_back(at::randn(shape1, {at::kCUDA})); if (!singleInput){ input_data.push_back(at::randn(shape2, {at::kCUDA})); } baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } std::string gen_mul_div_tensor_graph(const std::string& op) { return R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : Tensor = aten::)IR" + op + R"IR((%0, %1) return (%2))IR"; } std::string gen_mul_div_scalar_graph(const std::string& op, const std::string& scalar) { return R"IR( graph(%0 : Tensor): %1 : float = prim::Constant[value=)IR" + scalar + R"IR(]() %2 : Tensor = aten::)IR" + op + R"IR((%0, %1) return (%2))IR"; } TEST(Converters, ATenMulConvertsCorrectly) { // aten::mul.Tensor(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_mul_div_tensor_graph("mul"); baidu::mirana::poros::MulConverter mulconverter; mul_div_test_helper(graph_IR, &mulconverter, false); mul_div_test_helper(graph_IR, &mulconverter, false, {3, 4}, {4}); mul_div_test_helper(graph_IR, &mulconverter, false, {4}, {3, 4}); mul_div_test_helper(graph_IR, &mulconverter, false, {4, 1}, {1, 4}); mul_div_test_helper(graph_IR, &mulconverter, false, {3, 4, 3}, {4, 3}); mul_div_test_helper(graph_IR, &mulconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenMulScalarConvertsCorrectly) { // aten::mul.Scalar(Tensor self, Scalar other) -> Tensor const auto graph_IR = gen_mul_div_scalar_graph("mul", "2.4"); baidu::mirana::poros::MulConverter mulconverter; mul_div_test_helper(graph_IR, &mulconverter, true); mul_div_test_helper(graph_IR, &mulconverter, true, {3, 4, 3}); } TEST(Converters, ATenMul_ConvertsCorrectly) { // aten::mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) const auto graph_IR = gen_mul_div_tensor_graph("mul_"); baidu::mirana::poros::MulConverter mulconverter; mul_div_test_helper(graph_IR, &mulconverter, false); mul_div_test_helper(graph_IR, &mulconverter, false, {3, 4}, {4}); mul_div_test_helper(graph_IR, &mulconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenMul_ScalarConvertsCorrectly) { // aten::mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) const auto graph_IR = gen_mul_div_scalar_graph("mul_", "2.4"); baidu::mirana::poros::MulConverter mulconverter; mul_div_test_helper(graph_IR, &mulconverter, true); mul_div_test_helper(graph_IR, &mulconverter, true, {3, 4, 3}); } TEST(Converters, ATenDivConvertsCorrectly) { // aten::div.Tensor(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_mul_div_tensor_graph("div"); baidu::mirana::poros::DivConverter divconverter; mul_div_test_helper(graph_IR, &divconverter, false); mul_div_test_helper(graph_IR, &divconverter, false, {3, 4}, {4}); mul_div_test_helper(graph_IR, &divconverter, false, {4}, {3, 4}); mul_div_test_helper(graph_IR, &divconverter, false, {4, 1}, {1, 4}); mul_div_test_helper(graph_IR, &divconverter, false, {3, 4, 3}, {4, 3}); mul_div_test_helper(graph_IR, &divconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenDivScalarConvertsCorrectly) { // aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) const auto graph_IR = gen_mul_div_scalar_graph("div", "2.4"); baidu::mirana::poros::DivConverter divconverter; mul_div_test_helper(graph_IR, &divconverter, true); mul_div_test_helper(graph_IR, &divconverter, true, {3, 4, 3}); } TEST(Converters, ATenDiv_ConvertsCorrectly) { // aten::div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) const auto graph_IR = gen_mul_div_tensor_graph("div_"); baidu::mirana::poros::DivConverter divconverter; mul_div_test_helper(graph_IR, &divconverter, false); mul_div_test_helper(graph_IR, &divconverter, false, {3, 4}, {4}); mul_div_test_helper(graph_IR, &divconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenDiv_ScalarConvertsCorrectly) { // aten::div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) const auto graph_IR = gen_mul_div_scalar_graph("div_", "2.4"); baidu::mirana::poros::DivConverter divconverter; mul_div_test_helper(graph_IR, &divconverter, true); mul_div_test_helper(graph_IR, &divconverter, true, {3, 4, 3}); } TEST(Converters, ATenDivIntDivideIntConvertsCorrectly) { // aten::div.Tensor(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_mul_div_tensor_graph("div"); auto options_pyt_int = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kInt); std::vector input_data; input_data.push_back(torch::tensor({14}, options_pyt_int)); input_data.push_back(torch::tensor({2}, options_pyt_int)); baidu::mirana::poros::DivConverter divconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &divconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenDivFloatDivideIntConvertsCorrectly) { // aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=3]() %2 : Tensor = aten::div(%0, %1) return (%2))IR"; auto options_pyt_float = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kFloat); std::vector input_data; input_data.push_back(torch::tensor({15.3}, options_pyt_float)); baidu::mirana::poros::DivConverter divconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &divconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenDivIntDivideFloatConvertsCorrectly) { // aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) const auto graph_IR = gen_mul_div_scalar_graph("div", "2.4"); auto options_pyt_int = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kInt); std::vector input_data; input_data.push_back(torch::tensor({15}, options_pyt_int)); baidu::mirana::poros::DivConverter divconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &divconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenRemainderConvertsCorrectly) { // aten::remainder.Tensor(Tensor self, Tensor other) -> Tensor const auto graph_IR = gen_mul_div_tensor_graph("remainder"); baidu::mirana::poros::RemainderConverter remainder; mul_div_test_helper(graph_IR, &remainder, false); mul_div_test_helper(graph_IR, &remainder, false, {3, 4}, {4}); mul_div_test_helper(graph_IR, &remainder, false, {4}, {3, 4}); mul_div_test_helper(graph_IR, &remainder, false, {4, 1}, {1, 4}); mul_div_test_helper(graph_IR, &remainder, false, {3, 4, 3}, {4, 3}); mul_div_test_helper(graph_IR, &remainder, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenRemainderScalarConvertsCorrectly) { // aten::remainder.Scalar(Tensor self, Scalar other) -> Tensor const auto graph_IR = gen_mul_div_scalar_graph("remainder", "-0.4"); baidu::mirana::poros::RemainderConverter remainder; mul_div_test_helper(graph_IR, &remainder, true); mul_div_test_helper(graph_IR, &remainder, true, {3, 4, 3}); } static void mul_div_dynamic_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } TEST(Converters, ATenMulIntdynamicConvertsCorrectly) { // aten::mul.int(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : int = aten::mul(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::MulConverter mulconverter; std::vector input_data; input_data.push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); mul_div_dynamic_test_helper(graph_IR, &mulconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenDivIntdynamicConvertsCorrectly) { // aten::div.int(int a, int b) -> (float) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : float = aten::div(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::DivConverter divconverter; std::vector input_data; input_data.push_back(at::zeros({4, 5}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({10, 8}, {at::kCUDA})); prewarm_data[1].push_back(at::zeros({4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::zeros({4, 5}, {at::kCUDA})); mul_div_dynamic_test_helper(graph_IR, &divconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenDivNegIntdynamicConvertsCorrectly) { // aten::div.int(int a, int b) -> (float) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %34 : int = prim::Constant[value=100]() %35 : int = aten::sub(%3, %34) %5 : float = aten::div(%35, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::DivConverter divconverter; std::vector input_data; input_data.push_back(at::zeros({4, 5}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({10, 8}, {at::kCUDA})); prewarm_data[1].push_back(at::zeros({4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::zeros({4, 5}, {at::kCUDA})); mul_div_dynamic_test_helper(graph_IR, &divconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenFloordivIntdynamicConvertsCorrectly) { // aten::floordiv.int(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : int = aten::floordiv(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::FloordivConverter floordivconverter; std::vector input_data; input_data.push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({12, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); mul_div_dynamic_test_helper(graph_IR, &floordivconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenFloordivNegIntdynamicConvertsCorrectly) { // aten::floordiv.int(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %34 : int = prim::Constant[value=100]() %35 : int = aten::sub(%3, %34) %5 : int = aten::floordiv(%35, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::FloordivConverter floordivconverter; std::vector input_data; input_data.push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({12, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); mul_div_dynamic_test_helper(graph_IR, &floordivconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenRoundToZeroFloordivIntdynamicConvertsCorrectly) { // aten::__round_to_zero_floordiv(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : int = aten::__round_to_zero_floordiv(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::FloordivConverter floordivconverter; std::vector input_data; input_data.push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({12, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); mul_div_dynamic_test_helper(graph_IR, &floordivconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenRoundToZeroFloordivNegIntdynamicConvertsCorrectly) { // aten::__round_to_zero_floordiv(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %34 : int = prim::Constant[value=100]() %35 : int = aten::sub(%3, %34) %5 : int = aten::__round_to_zero_floordiv(%35, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::FloordivConverter floordivconverter; std::vector input_data; input_data.push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({12, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({10, 4}, {at::kCUDA}).to(at::ScalarType::Int)); mul_div_dynamic_test_helper(graph_IR, &floordivconverter, input_data, true, &prewarm_data); }