// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file group_norm_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/group_norm.h" #include "poros/util/test_util.h" static void groupnorm_test_helper(const std::string& graph_IR, std::vector& input_data) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::GroupNormConverter groupnormconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &groupnormconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenGroupNormConvertsCorrectly) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %gamma : Tensor, %beta : Tensor): %1: int = prim::Constant[value=2]() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %gamma, %beta, %8, %7) return (%9))IR"; std::vector input_data; input_data.push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); input_data.push_back(at::randn({10}, {at::kCUDA})); input_data.push_back(at::randn({10}, {at::kCUDA})); groupnorm_test_helper(graph_IR, input_data); } TEST(Converters, ATenGroupNormConvertsCorrectly2InputsGamma) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %gamma : Tensor): %1 : int = prim::Constant[value=20]() %2 : None = prim::Constant() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %gamma, %2, %8, %7) return (%9))IR"; std::vector input_data; input_data.push_back(at::randn({4, 100, 50, 50}, {at::kCUDA})); input_data.push_back(at::randn({100}, {at::kCUDA})); groupnorm_test_helper(graph_IR, input_data); } TEST(Converters, ATenGroupNormConvertsCorrectlyOneInput) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=20]() %2 : None = prim::Constant() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %2, %2, %8, %7) return (%9))IR"; std::vector input_data; input_data.push_back(at::randn({4, 100, 50, 50}, {at::kCUDA})); groupnorm_test_helper(graph_IR, input_data); } static void groupnorm_dy_test_helper(const std::string& graph_IR, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::GroupNormConverter groupnormconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &groupnormconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenGroupNormConvertsDynamicCorrectly) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %gamma : Tensor, %beta : Tensor): %1: int = prim::Constant[value=2]() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %gamma, %beta, %8, %7) return (%9))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 10, 3, 3}, {at::kCUDA})); prewarm_data[0].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[0].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({10}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); input_data.push_back(at::ones({10}, {at::kCUDA})); input_data.push_back(at::ones({10}, {at::kCUDA})); groupnorm_dy_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, ATenGroupNormConvertsCorrectlyDynamic2Inputsgamma) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %gamma : Tensor): %1 : int = prim::Constant[value=2]() %2 : None = prim::Constant() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %gamma, %2, %8, %7) return (%9))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({20, 100, 50, 50}, {at::kCUDA})); prewarm_data[0].push_back(at::ones({100}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({10, 100, 40, 40}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({100}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({10, 100, 40, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({100}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({10, 100, 40, 40}, {at::kCUDA})); input_data.push_back(at::ones({100}, {at::kCUDA})); groupnorm_dy_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, ATenGroupNormConvertsDynamicOneInputCorrectly) { // aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=2]() %2 : None = prim::Constant() %7 : bool = prim::Constant[value=0]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : Tensor = aten::group_norm(%0, %1, %2, %2, %8, %7) return (%9))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 10, 6, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 10, 3, 3}, {at::kCUDA})); groupnorm_dy_test_helper(graph_IR, input_data, true, &prewarm_data); }