// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file generate_test.cpp * @author tianshaoqing@baidu.com * @date Tue Nov 23 12:26:28 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/generate.h" #include "poros/util/test_util.h" static void generate_dy_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenZeroslikeConvertsCorrectly) { // aten::zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %zerosout : Tensor = aten::zeros_like(%0, %1, %1, %1, %1, %1) return (%zerosout))IR"; std::vector input_data; input_data.push_back(at::randn({5, 6, 7}, {at::kCUDA})); baidu::mirana::poros::ZerosLikeConverter zeroslikeconverter; generate_dy_test_helper(graph_IR, &zeroslikeconverter, input_data); } TEST(Converters, ATenZeroslikeDtypeConvertsCorrectly) { // aten::zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor // scalar type index in aten and support situation ('o' is support and 'x' is not support): // uint8_t -> 0 x // int8_t -> 1 x // int16_t -> 2 x // int -> 3 o // int64_t -> 4 x // Half -> 5 o // float -> 6 o // bool -> 11 x const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : int = prim::Constant[value=3]() %zerosout : Tensor = aten::zeros_like(%0, %2, %1, %1, %1, %1) return (%zerosout))IR"; std::vector input_data; input_data.push_back(at::randn({5, 6, 7}, {at::kCUDA})); baidu::mirana::poros::ZerosLikeConverter zeroslikeconverter; generate_dy_test_helper(graph_IR, &zeroslikeconverter, input_data); } TEST(Converters, ATenZeroslikeDynamicConvertsCorrectly) { // aten::zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %zerosout : Tensor = aten::zeros_like(%0, %1, %1, %1, %1, %1) return (%zerosout))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::ZerosLikeConverter zeroslikeconverter; generate_dy_test_helper(graph_IR, &zeroslikeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenZeroslikeDynamicDtypeConvertsCorrectly) { // aten::zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : int = prim::Constant[value=5]() %zerosout : Tensor = aten::zeros_like(%0, %2, %1, %1, %1, %1) return (%zerosout))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::ZerosLikeConverter zeroslikeconverter; generate_dy_test_helper(graph_IR, &zeroslikeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenZerosDynamicConvertsCorrectly) { // aten::zeros(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : None = prim::Constant() %3 : Device = prim::Constant[value="cuda"]() %4 : Tensor = aten::zeros(%1, %2, %2, %3, %2) return (%4))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::ZerosConverter ZerosConverter; generate_dy_test_helper(graph_IR, &ZerosConverter, input_data, true, &prewarm_data); } TEST(Converters, ATenZerosDynamicDtypeConvertsCorrectly) { // aten::zeros(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : None = prim::Constant() %3 : Device = prim::Constant[value="cuda"]() %4 : int = prim::Constant[value=3]() %5 : Tensor = aten::zeros(%1, %4, %2, %3, %2) return (%5))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::ZerosConverter ZerosConverter; generate_dy_test_helper(graph_IR, &ZerosConverter, input_data, true, &prewarm_data); } TEST(Converters, ATenOnesDynamicConvertsCorrectly) { // aten::ones(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : None = prim::Constant() %3 : Device = prim::Constant[value="cuda"]() %4 : Tensor = aten::ones(%1, %2, %2, %3, %2) return (%4))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::OnesConverter onesconverter; generate_dy_test_helper(graph_IR, &onesconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenOnesDynamicDtypeConvertsCorrectly) { // aten::ones(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : None = prim::Constant() %3 : Device = prim::Constant[value="cuda"]() %4 : int = prim::Constant[value=5]() %5 : Tensor = aten::ones(%1, %4, %2, %3, %2) return (%5))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::OnesConverter onesconverter; generate_dy_test_helper(graph_IR, &onesconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenFullDynamicDtypeConvertsCorrectly) { // aten::full(int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : None = prim::Constant() %3 : Device = prim::Constant[value="cuda"]() %4 : int = prim::Constant[value=6]() %5 : Tensor = aten::full(%1, %4, %4, %2, %3, %2) return (%5))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::FullConverter fullconverter; generate_dy_test_helper(graph_IR, &fullconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenArangeDynamicDtypeConvertsCorrectly) { // aten::arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=1]() %2 : int = aten::size(%0, %1) %3 : None = prim::Constant() %4 : Device = prim::Constant[value="cuda"]() %5 : int = prim::Constant[value=3]() %6 : Tensor = aten::arange(%2, %5, %3, %4, %3) return (%6))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({5, 6, 7}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 5, 6}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({4, 5, 6}, {at::kCUDA})); baidu::mirana::poros::ArangeConverter arangeconverter; generate_dy_test_helper(graph_IR, &arangeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenArangeStartEndDynamicDtypeConvertsCorrectly) { // aten::arange.start(Scalar start, Scalar end, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %s.1 : int = aten::size(%0, %1) %s.2 : int = aten::size(%0, %2) %3 : None = prim::Constant() %4 : Device = prim::Constant[value="cuda"]() %5 : int = prim::Constant[value=3]() %6 : Tensor = aten::arange(%s.1, %s.2, %5, %3, %4, %3) return (%6))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({1, 8}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({1, 2}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({1, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({1, 5}, {at::kCUDA})); baidu::mirana::poros::ArangeConverter arangeconverter; generate_dy_test_helper(graph_IR, &arangeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenArangeStartConstantEndDynamicDtypeConvertsCorrectly) { // aten::arange.start(Scalar start, Scalar end, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %s.1 : int = prim::Constant[value=-10]() %1 : int = prim::Constant[value=1]() %s.2 : int = aten::size(%0, %1) %3 : None = prim::Constant() %4 : Device = prim::Constant[value="cuda"]() %5 : int = prim::Constant[value=6]() %6 : Tensor = aten::arange(%s.1, %s.2, %5, %3, %4, %3) return (%6))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({1, 8}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({1, 2}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({1, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({1, 5}, {at::kCUDA})); baidu::mirana::poros::ArangeConverter arangeconverter; generate_dy_test_helper(graph_IR, &arangeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenTensorDynamicDtypeConvertsCorrectly) { const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : bool = prim::Constant[value=0]() %2 : Device = prim::Constant[value="cuda:0"]() %3 : int = prim::Constant[value=6]() %4 : int[] = aten::size(%0) %5 : Tensor = aten::tensor(%4, %3, %2, %1) return (%5))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({11, 2, 1}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({10, 2, 1}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({10, 2, 1}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({10, 2, 1}, {at::kCUDA})); baidu::mirana::poros::TensorConverter tensorconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &tensorconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenLinspaceScalarTensorConvertsCorrectly) { // aten::linspace(Scalar start, Scalar end, int? steps=None, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) // aten::linspace目前只能构造dynamic的单测,非dy的单测会被某些pass变为constant const auto graph_IR = R"IR( graph(%0 : Tensor): %2 : int = prim::Constant[value=0]() %3 : None = prim::Constant() %start : int = prim::Constant[value=-10]() %end : int = prim::Constant[value=100]() %step : int = aten::size(%0, %2) %device : Device = prim::Constant[value="cuda"]() %5 : Tensor = aten::linspace(%start, %end, %step, %3, %3, %device, %3) %6 : Tensor = aten::mul(%0, %5) return (%6))IR"; std::vector input_data; input_data.push_back(at::ones({6}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({6}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({6}, {at::kCUDA})); baidu::mirana::poros::LinspaceConverter linspaceconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &linspaceconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenLinspaceStartEndDiffTypeConvertsCorrectly) { // aten::linspace(Scalar start, Scalar end, int? steps=None, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %2 : int = prim::Constant[value=0]() %3 : None = prim::Constant() %start : int = prim::Constant[value=-10]() %end : float = prim::Constant[value=43.3]() %step : int = aten::size(%0, %2) %device : Device = prim::Constant[value="cuda"]() %5 : Tensor = aten::linspace(%start, %end, %step, %3, %3, %device, %3) %6 : Tensor = aten::mul(%0, %5) return (%6))IR"; std::vector input_data; input_data.push_back(at::ones({6}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::ones({10}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({6}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({6}, {at::kCUDA})); baidu::mirana::poros::LinspaceConverter linspaceconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &linspaceconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenLinspaceStepNoneConvertsCorrectly) { std::string graph_IR_str; if (TORCH_VERSION_MAJOR < 2 && TORCH_VERSION_MINOR < 11) { // aten::linspace(Scalar start, Scalar end, int? steps=None, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) graph_IR_str = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : int = prim::Constant[value=0]() %3 : None = prim::Constant() %start : int = aten::size(%0, %2) %end : float = prim::Constant[value=43.3]() %device : Device = prim::Constant[value="cuda"]() %5 : Tensor = aten::linspace(%start, %end, %3, %3, %3, %device, %3) %6 : Tensor = aten::mul(%1, %5) return (%6))IR"; } else { // aten::linspace(Scalar start, Scalar end, int steps, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) graph_IR_str = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : int = prim::Constant[value=0]() %3 : None = prim::Constant() %start : int = aten::size(%0, %2) %end : float = prim::Constant[value=43.3]() %step : int = prim::Constant[value=100]() %device : Device = prim::Constant[value="cuda"]() %5 : Tensor = aten::linspace(%start, %end, %step, %3, %3, %device, %3) %6 : Tensor = aten::mul(%1, %5) return (%6))IR"; } const std::string graph_IR = graph_IR_str; std::vector input_data; input_data.push_back(at::ones({1}, {at::kCUDA})); input_data.push_back(at::ones({100}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::ones({6}, {at::kCUDA})); prewarm_data[0].push_back(at::ones({100}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({1}, {at::kCUDA})); prewarm_data[1].push_back(at::ones({100}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({1}, {at::kCUDA})); prewarm_data[2].push_back(at::ones({100}, {at::kCUDA})); baidu::mirana::poros::LinspaceConverter linspaceconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &linspaceconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenFulllikeConvertsCorrectly) { // aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %scalar : float = prim::Constant[value=2.5]() %out : Tensor = aten::full_like(%0, %scalar, %1, %1, %1, %1, %1) return (%out))IR"; std::vector input_data; input_data.push_back(at::randn({2, 3, 4}, {at::kCUDA})); baidu::mirana::poros::FulllikeConverter fulllikeconverter; generate_dy_test_helper(graph_IR, &fulllikeconverter, input_data); } TEST(Converters, ATenFulllikeDefaultTypeConvertsCorrectly) { // aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %scalar : float = prim::Constant[value=2.5]() %out : Tensor = aten::full_like(%0, %scalar, %1, %1, %1, %1, %1) return (%out))IR"; std::vector input_data; auto options_pyt_int = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kInt); input_data.push_back(at::zeros({2, 3, 4}, options_pyt_int)); baidu::mirana::poros::FulllikeConverter fulllikeconverter; generate_dy_test_helper(graph_IR, &fulllikeconverter, input_data); } TEST(Converters, ATenFulllikeDtypeConvertsCorrectly) { // aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) // scalar type index in aten and support situation ('o' is support and 'x' is not support): // uint8_t -> 0 x // int8_t -> 1 x // int16_t -> 2 x // int -> 3 o // int64_t -> 4 x // Half -> 5 o // float -> 6 o // bool -> 11 x const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : int = prim::Constant[value=6]() %scalar : int = prim::Constant[value=2]() %out : Tensor = aten::full_like(%0, %scalar, %2, %1, %1, %1, %1) return (%out))IR"; std::vector input_data; input_data.push_back(at::randn({2, 3, 4}, {at::kCUDA})); baidu::mirana::poros::FulllikeConverter fulllikeconverter; generate_dy_test_helper(graph_IR, &fulllikeconverter, input_data); } TEST(Converters, ATenFulllikeDynamicConvertsCorrectly) { // aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %scalar : int = prim::Constant[value=2]() %out : Tensor = aten::full_like(%0, %scalar, %1, %1, %1, %1, %1) return (%out))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 3, 4}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 3, 4}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 3, 4}, {at::kCUDA})); baidu::mirana::poros::FulllikeConverter fulllikeconverter; generate_dy_test_helper(graph_IR, &fulllikeconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenFulllikeDynamicDtypeConvertsCorrectly) { // aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : int = prim::Constant[value=3]() %scalar : float = prim::Constant[value=2.5]() %out : Tensor = aten::full_like(%0, %scalar, %2, %1, %1, %1, %1) return (%out))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 3, 4}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 3, 4}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 3, 4}, {at::kCUDA})); baidu::mirana::poros::FulllikeConverter fulllikeconverter; generate_dy_test_helper(graph_IR, &fulllikeconverter, input_data, true, &prewarm_data); }