// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file constant_pad_nd_test.cpp * @author tianshaoqing@baidu.com * @date Thur Dec 2 14:29:20 CST 2021 * @brief **/ #include #include #include "poros/util/test_util.h" #include "poros/converter/gpu/constant_pad_nd.h" static void constant_pad_nd_test_helper(const std::string& graph_IR, std::vector input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; baidu::mirana::poros::ConstantPadNdConverter constantpadndconverter; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &constantpadndconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } static std::string gen_constant_pad_nd_graph(const std::string& padding_shape_str, const std::string& value_str, const bool padding_value_is_int = false) { if (padding_value_is_int) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + padding_shape_str + R"IR(]]() %2 : int = prim::Constant[value=)IR" + value_str + R"IR(]() %3 : Tensor = aten::constant_pad_nd(%0, %1, %2) return (%3))IR"; } else { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + padding_shape_str + R"IR(]]() %2 : float = prim::Constant[value=)IR" + value_str + R"IR(]() %3 : Tensor = aten::constant_pad_nd(%0, %1, %2) return (%3))IR"; } } TEST(Converters, TestAtenConstantPadNdCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2, 3, 4", "1.5"); std::vector input_data; input_data.push_back(at::randn({4, 5, 6, 7}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data); } TEST(Converters, TestAtenConstantPadNdLastDimCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2", "1.5"); std::vector input_data; input_data.push_back(at::randn({4, 5, 6, 7}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data); } TEST(Converters, TestAtenConstantPadNdZerosPaddingDimsCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("0, 1, 2, 0", "1.5"); std::vector input_data; input_data.push_back(at::randn({4, 5, 6, 7}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data); } TEST(Converters, TestAtenConstantPadNdIntCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2, 3, 4", "1", true); std::vector input_data; auto options_pyt = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kInt); input_data.push_back(at::randint(0, 10, {4, 5, 6, 7}, options_pyt)); constant_pad_nd_test_helper(graph_IR, input_data); } TEST(Converters, TestAtenConstantPadNdInputSingleDimCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2", "1.5"); std::vector input_data; input_data.push_back(at::randn({6}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data); } TEST(Converters, TestAtenConstantPadNdDynamicFloatCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2, 3, 4", "1.5"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({3, 4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, TestAtenConstantPadNdDynamicFloatTwoPaddingDimsZerosCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("2, 0, 0, 2", "1.5"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({3, 4, 5, 6}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({2, 3, 4, 5}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, TestAtenConstantPadNdDynamicFloatSingleDimCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2", "1.5"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({10}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({5}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({5}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({5}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, TestAtenConstantPadNdDynamicIntCorrectly) { const auto graph_IR = gen_constant_pad_nd_graph("1, 2, 3, 4", "2", true); std::vector> prewarm_data = {{}, {}, {}}; auto options_pyt = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kFloat); prewarm_data[0].push_back(at::randint(0, 10, {3, 4, 5, 6}, options_pyt)); prewarm_data[1].push_back(at::randint(0, 10, {2, 3, 4, 5}, options_pyt)); prewarm_data[2].push_back(at::randint(0, 10, {2, 3, 4, 5}, options_pyt)); std::vector input_data; input_data.push_back(at::randint(0, 10, {2, 3, 4, 5}, {at::kCUDA})); constant_pad_nd_test_helper(graph_IR, input_data, true, &prewarm_data); }