// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file clone_test.cpp * @author tianshaoqing@baidu.com * @date Tue Nov 23 12:26:28 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/clone.h" #include "poros/util/test_util.h" static void clone_dy_test_helper(const std::string& graph_IR, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::CloneConverter cloneconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &cloneconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenCloneConvertsCorrectly) { // aten::clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %memory_format : None = prim::Constant[value=0]() %1 : Tensor = aten::clone(%0, %memory_format) %2 : Tensor = aten::relu(%1) return (%2))IR"; std::vector input_data; input_data.push_back(at::randn({10, 100, 100, 100}, {at::kCUDA})); clone_dy_test_helper(graph_IR, input_data); } TEST(Converters, ATenCloneConvertsDynamicCorrectly) { // aten::clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor): %memory_format : None = prim::Constant[value=0]() %1 : Tensor = aten::clone(%0, %memory_format) %2 : Tensor = aten::relu(%1) return (%2))IR"; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({20, 150, 100, 100}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({10, 100, 50, 50}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({10, 100, 50, 50}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({10, 100, 50, 50}, {at::kCUDA})); clone_dy_test_helper(graph_IR, input_data, true, &prewarm_data); }