// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file aten_eval_test.cpp * @author wangrui39@baidu.com * @date Mon December 13 11:36:11 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/aten_eval.h" #include "poros/util/test_util.h" static void aten_eval_test_helper(const std::string& graph_IR, const std::vector& input_data, baidu::mirana::poros::IConverter* converter) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } /*TEST(Converters, AppendConverterCorrectly) { //"aten::append.t(t[](a!) self, t(c -> *) el) -> (t[](a!))" const auto graph = R"IR( graph(%a.1 : Tensor, %b.1 : Tensor, %c.1 : Tensor): %12 : int = prim::Constant[value=0]() %x.1 : Tensor[] = prim::ListConstruct(%a.1) %7 : Tensor[] = aten::append(%x.1, %b.1) # test.py:26:4 %10 : Tensor[] = aten::append(%x.1, %c.1) # test.py:27:4 %13 : Tensor = aten::cat(%x.1, %12) # test.py:28:11 return (%13))IR"; std::vector input_data; auto input1 = at::randn({3, 4}, {at::kCUDA}); auto input2 = at::randn({3, 4}, {at::kCUDA}); auto input3 = at::randn({3, 4}, {at::kCUDA}); input_data.push_back(input1); input_data.push_back(input2); input_data.push_back(input3); baidu::mirana::poros::AppendConverter appendConverter; aten_eval_test_helper(graph, input_data, &appendConverter); }*/ TEST(Converters, GetitemConverterCorrectly) { // "aten::__getitem__.t(t[](a) list, int idx) -> (t(*))"*/ const auto graph = R"IR( graph(%a.1 : Tensor, %b.1 : Tensor): %12 : int = prim::Constant[value=0]() %16 : int = prim::Constant[value=1]() %x.1 : Tensor[] = prim::ListConstruct(%a.1) %7 : Tensor[] = aten::append(%x.1, %b.1) %ret.1 : Tensor = aten::__getitem__(%x.1, %12) %17 : Tensor = aten::__getitem__(%x.1, %16) %19 : Tensor = aten::add(%ret.1, %17, %16) return (%19))IR"; std::vector input_data; auto input1 = at::randn({3, 4}, {at::kCUDA}); auto input2 = at::randn({3, 4}, {at::kCUDA}); input_data.push_back(input1); input_data.push_back(input2); baidu::mirana::poros::GetitemConverter getitemconverter; aten_eval_test_helper(graph, input_data, &getitemconverter); } TEST(Converters, SetitemConverterCorrectly) { // aten::_set_item.t(t[](a!) l, int idx, t(b -> *) el) -> (t[](a!)) const auto graph = R"IR( graph(%x.1 : Tensor, %y.1 : Tensor): %6 : int = prim::Constant[value=1]() # test.py:28:15 %10 : int = prim::Constant[value=0]() # test.py:28:6 %a.1 : Tensor[] = prim::ListConstruct(%x.1, %y.1) %8 : Tensor = aten::add(%x.1, %6, %6) # test.py:28:11 %11 : Tensor[] = aten::_set_item(%a.1, %10, %8) # test.py:28:4 %ret.1 : Tensor = aten::cat(%a.1, %10) # test.py:29:10 return (%ret.1))IR"; std::vector input_data; auto input1 = at::randn({3, 4}, {at::kCUDA}); auto input2 = at::randn({3, 4}, {at::kCUDA}); input_data.push_back(input1); input_data.push_back(input2); baidu::mirana::poros::SetitemConverter setitemconverter; aten_eval_test_helper(graph, input_data, &setitemconverter); } static void eval_dynamic_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } TEST(Converters, ATenGetitemdynamicConvertsCorrectly) { // "aten::__getitem__.t(t[](a) list, int idx) -> (t(*))"*/ const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int[] = aten::size(%0) %2 : int = prim::Constant[value=1]() %3 : int = aten::__getitem__(%1, %2) %4 : Tensor = aten::add(%0, %3, %2) return (%4))IR"; baidu::mirana::poros::GetitemConverter getitemconverter; std::vector input_data; input_data.push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); eval_dynamic_test_helper(graph_IR, &getitemconverter, input_data, true, &prewarm_data); }