// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * SPDX-License-Identifier: Apache-2.0 */ #pragma once // Before: // B = Unsqueeze(Constant, axes) // After: // B = Constant (Constant with new shape) #include #include "onnx/defs/tensor_util.h" #include "onnxoptimizer/pass.h" namespace ONNX_NAMESPACE { namespace optimization { struct FuseConstantUnsqueeze final : public PredicateBasedPass { explicit FuseConstantUnsqueeze() : PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete, PassOptimizationType::Compute) {} std::string getPassName() const override { return "fuse_constant_unsqueeze"; } bool patternMatchPredicate(Node* node) override { return node->kind() == kUnsqueeze && node->inputs()[0]->node()->kind() == kConstant; } bool runTransform(Node* n, Graph& graph, NodeDestroyType& destroy_current) override { destroy_current = NodeDestroyType::DestroyZero; // check if Constant is only used by Reshape if (n->inputs()[0]->uses().size() > 1) { return false; } Node* unsqueeze = n; Node* constant = n->inputs()[0]->node(); // Process 'axes' data std::vector axes; if (unsqueeze->hasAttribute(kaxes)) { // opset 13 below axes = unsqueeze->is(kaxes); } else { // opset 13 and above - first check if 'unsqueeze' has 'axes' input // constant if (unsqueeze->inputs()[1]->node()->kind() != kConstant) { return false; } if (unsqueeze->inputs()[1]->uses().size() > 1) { return false; } Node* axes_const = unsqueeze->inputs()[1]->node(); Tensor t = axes_const->t(kvalue); axes = ParseData(&t); } Tensor t = constant->t(kvalue); const auto& ori_size = t.sizes(); for (size_t i = 0; i < axes.size(); ++i) { if (axes[i] < 0) { axes[i] = axes[i] + ori_size.size() + i + 1; } } std::vector new_size(ori_size.begin(), ori_size.end()); for (size_t i = 0; i < axes.size(); ++i) { new_size.insert(new_size.begin() + axes[i], 1); } t.sizes().clear(); t.sizes().insert(t.sizes().begin(), new_size.begin(), new_size.begin() + new_size.size()); constant->t_(kvalue, std::move(t)); // update constant node constant->output()->setSizes(unsqueeze->output()->sizes()); constant->output()->setElemType(unsqueeze->output()->elemType()); const bool replacing_success = tryReplacingAllUsesWith(unsqueeze->output(), unsqueeze->inputs()[0]); if (!replacing_success) { return false; } destroy_current = NodeDestroyType::DestroyOne; return true; } }; } // namespace optimization } // namespace ONNX_NAMESPACE