// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * SPDX-License-Identifier: Apache-2.0 */ #pragma once // Before: // B = Reshape(Constant) // After: // B = Constant (Constant with new shape) #include #include "onnx/defs/tensor_util.h" #include "onnxoptimizer/pass.h" namespace ONNX_NAMESPACE { namespace optimization { struct FuseConstantCast final : public PredicateBasedPass { explicit FuseConstantCast() : PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete, PassOptimizationType::Compute) {} std::string getPassName() const override { return "fuse_constant_cast"; } bool patternMatchPredicate(Node* node) override { return node->kind() == kCast && node->inputs()[0]->node()->kind() == kConstant; } bool runTransform(Node* n, Graph& graph, NodeDestroyType& destroy_current) override { destroy_current = NodeDestroyType::DestroyZero; if (n->inputs()[0]->uses().size() > 1) { return false; } Node* cast = n; Node* constant = n->inputs()[0]->node(); Tensor t = constant->t(kvalue); auto dtype = cast->i(kto); t.elem_type() = dtype; constant->t_(kvalue, std::move(t)); if (!tryReplacingAllUsesWith(cast->output(), cast->inputs()[0])) { return false; } destroy_current = NodeDestroyType::DestroyOne; return true; } }; } // namespace optimization } // namespace ONNX_NAMESPACE