// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle2onnx/mapper/tensor/top_k_v2.h" namespace paddle2onnx { REGISTER_MAPPER(top_k_v2, TopKV2Mapper) void TopKV2Mapper::Opset11() { auto x_info = GetInput("X"); auto output_info = GetOutput("Out"); auto indices_info = GetOutput("Indices"); std::string k = ""; if (HasInput("K")) { auto k_info = GetInput("K"); k = helper_->AutoCast(k_info[0].name, k_info[0].dtype, P2ODataType::INT64); if (k_info[0].Rank() == 0) { k = helper_->Reshape(k, std::vector(1, -1)); } } else { int64_t k_value = 0; GetAttr("k", &k_value); k = helper_->Constant({1}, ONNX_NAMESPACE::TensorProto::INT64, k_value); } auto out_node = helper_->MakeNode("TopK", {x_info[0].name, k}, 2); AddAttribute(out_node, "largest", static_cast(largest_)); AddAttribute(out_node, "sorted", static_cast(sorted_)); AddAttribute(out_node, "axis", axis_); helper_->AutoCast(out_node->output(0), output_info[0].name, x_info[0].dtype, output_info[0].dtype); helper_->AutoCast(out_node->output(1), indices_info[0].name, P2ODataType::INT64, indices_info[0].dtype); } } // namespace paddle2onnx