// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle2onnx/mapper/tensor/gaussian_random.h" namespace paddle2onnx { REGISTER_MAPPER(gaussian_random, GaussianRandomMapper) int32_t GaussianRandomMapper::GetMinOpset(bool verbose) { if (HasInput("ShapeTensor") && !IsConstantInput("ShapeTensor")) { Logger(verbose, 9) << "While ShapeTensor as input and it's not a constant tensor, " << RequireOpset(9) << std::endl; return 9; } if (HasInput("ShapeTensorList")) { Logger(verbose, 9) << "While ShapeTensorList as input, " << RequireOpset(9) << std::endl; return 9; } return 7; } void GaussianRandomMapper::Opset7() { auto out_info = GetOutput("Out"); std::string shape_tensor_name = ""; std::vector shape; if (HasInput("ShapeTensor")) { if (!TryGetInputValue("ShapeTensor", &shape)) { auto shape_info = GetInput("ShapeTensor"); shape_tensor_name = helper_->AutoCast(shape_info[0].name, shape_info[0].dtype, P2ODataType::INT64); } } else if (HasInput("ShapeTensorList")) { auto shape_info = GetInput("ShapeTensorList"); shape_tensor_name = helper_->ConcatIndices(shape_info); } else { shape.assign(shape_.begin(), shape_.end()); } if (shape.size() > 0) { auto node = helper_->MakeNode("RandomNormal", {}, {out_info[0].name}); AddAttribute(node, "dtype", GetOnnxDtype(out_info[0].dtype)); AddAttribute(node, "mean", mean_); AddAttribute(node, "scale", std_); AddAttribute(node, "shape", shape_); AddAttribute(node, "seed", static_cast(seed_)); } else { auto tensor = helper_->ConstOfShape(shape_tensor_name, GetOnnxDtype(out_info[0].dtype), float(0)); auto node = helper_->MakeNode("RandomNormalLike", {tensor}, {out_info[0].name}); AddAttribute(node, "dtype", GetOnnxDtype(out_info[0].dtype)); AddAttribute(node, "mean", mean_); AddAttribute(node, "scale", std_); AddAttribute(node, "seed", static_cast(seed_)); } } } // namespace paddle2onnx