// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle2onnx/mapper/nn/dropout.h" #include namespace paddle2onnx { REGISTER_MAPPER(dropout, DropoutMapper) int32_t DropoutMapper::GetMinOpset(bool verbose) { if (dropout_implementation_ != "downgrade_in_infer" && dropout_implementation_ != "upscale_in_train") { Error() << "Drop out type: " << dropout_implementation_ << " is not supported yet." << std::endl; return -1; } if (dropout_implementation_ == "downgrade_in_infer") { if (IsAttrVar("dropout_prob") && !IsConstant(GetAttrVar("dropout_prob")[0])) { Error() << "While Attribute(dropout_prob)'s type is Tensor, it's not " "supported " "unless it's a constant tensor when dropout_implementation is " "downgrade_in_infer." << std::endl; return -1; } } return 7; } void DropoutMapper::Opset7() { auto input_info = GetInput("X"); auto output_info = GetOutput("Out"); if (dropout_implementation_ == "upscale_in_train") { helper_->MakeNode("Identity", {input_info[0].name}, {output_info[0].name}); } else { if (IsAttrVar("dropout_prob")) { auto prob_info = GetAttrVar("dropout_prob"); std::vector temp; TryGetValue(prob_info[0], &temp); dropout_prob_ = temp[0]; } else { GetAttr("dropout_prob", &dropout_prob_); } std::vector value = {1 - dropout_prob_}; std::string scale_node = helper_->Constant(GetOnnxDtype(input_info[0].dtype), value); helper_->MakeNode("Mul", {input_info[0].name, scale_node}, {output_info[0].name}); } } } // namespace paddle2onnx