// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/segmentation/ppseg/preprocessor.h" #include "fastdeploy/vision/segmentation/ppseg/postprocessor.h" namespace fastdeploy { namespace vision { /** \brief All segmentation model APIs are defined inside this namespace * */ namespace segmentation { /*! @brief PaddleSeg serials model object used when to load a PaddleSeg model exported by PaddleSeg repository */ class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g unet/model.pdmodel * \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] config_file Path of configuration file for deployment, e.g unet/deploy.yml * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is Paddle format */ PaddleSegModel(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); /** \brief Clone a new PaddleSegModel with less memory usage when multiple instances of the same model are created * * \return new PaddleDetModel* type unique pointer */ virtual std::unique_ptr Clone() const; /// Get model's name std::string ModelName() const { return "PaddleSeg"; } /** \brief DEPRECATED Predict the segmentation result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output segmentation result will be writen to this structure * \return true if the segmentation prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, SegmentationResult* result); /** \brief Predict the segmentation result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output segmentation result will be writen to this structure * \return true if the segmentation prediction successed, otherwise false */ virtual bool Predict(const cv::Mat& im, SegmentationResult* result); /** \brief Predict the segmentation results for a batch of input images * * \param[in] imgs, The input image list, each element comes from cv::imread() * \param[in] results The output segmentation result list * \return true if the prediction successed, otherwise false */ virtual bool BatchPredict(const std::vector& imgs, std::vector* results); /// Get preprocessor reference of PaddleSegModel virtual PaddleSegPreprocessor& GetPreprocessor() { return preprocessor_; } /// Get postprocessor reference of PaddleSegModel virtual PaddleSegPostprocessor& GetPostprocessor() { return postprocessor_; } protected: bool Initialize(); PaddleSegPreprocessor preprocessor_; PaddleSegPostprocessor postprocessor_; }; } // namespace segmentation } // namespace vision } // namespace fastdeploy