// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" #include "fastdeploy/vision/keypointdet/pptinypose/pptinypose_utils.h" namespace fastdeploy { namespace vision { /** \brief All keypoint detection model APIs are defined inside this namespace * */ namespace keypointdetection { /*! @brief PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection */ class FASTDEPLOY_DECL PPTinyPose : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g pptinypose/model.pdmodel * \param[in] params_file Path of parameter file, e.g pptinypose/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] config_file Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is Paddle format */ PPTinyPose(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); /// Get model's name std::string ModelName() const { return "PaddleDetection/PPTinyPose"; } /** \brief Predict the keypoint detection result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output keypoint detection result will be writen to this structure * \return true if the keypoint prediction successed, otherwise false */ bool Predict(cv::Mat* im, KeyPointDetectionResult* result); /** \brief Predict the keypoint detection result with given detection result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output keypoint detection result will be writen to this structure * \param[in] detection_result The structure strores pedestrian detection result, which is used to crop image for multi-persons keypoint detection * \return true if the keypoint prediction successed, otherwise false */ bool Predict(cv::Mat* im, KeyPointDetectionResult* result, const DetectionResult& detection_result); /** \brief Whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is true */ bool use_dark = true; /// This function will disable normalize in preprocessing step. void DisableNormalize() { disable_normalize_ = true; BuildPreprocessPipelineFromConfig(); } /// This function will disable hwc2chw in preprocessing step. void DisablePermute() { disable_permute_ = true; BuildPreprocessPipelineFromConfig(); } protected: bool Initialize(); /// Build the preprocess pipeline from the loaded model bool BuildPreprocessPipelineFromConfig(); /// Preprocess an input image, and set the preprocessed results to `outputs` bool Preprocess(Mat* mat, std::vector* outputs); /// Postprocess the inferenced results, and set the final result to `result` bool Postprocess(std::vector& infer_result, KeyPointDetectionResult* result, const std::vector& center, const std::vector& scale); private: std::vector> processors_; std::string config_file_; // for recording the switch of hwc2chw bool disable_permute_ = false; // for recording the switch of normalize bool disable_normalize_ = false; }; } // namespace keypointdetection } // namespace vision } // namespace fastdeploy