// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/facedet/ppdet/blazeface/blazeface.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy{ namespace vision{ namespace facedet{ BlazeFace::BlazeFace(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option, const ModelFormat& model_format) : preprocessor_(config_file){ valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::LITE}; valid_gpu_backends = {Backend::OPENVINO, Backend::LITE, Backend::PDINFER}; runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool BlazeFace::Initialize(){ if (!InitRuntime()){ FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool BlazeFace::Predict(const cv::Mat& im, FaceDetectionResult* result){ std::vector results; if (!this->BatchPredict({im}, &results)) { return false; } *result = std::move(results[0]); return true; } bool BlazeFace::BatchPredict(const std::vector& images, std::vector* results){ std::vector fd_images = WrapMat(images); FDASSERT(images.size() == 1, "Only support batch = 1 now."); std::vector>> ims_info; if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) { FDERROR << "Failed to preprocess the input image." << std::endl; return false; } reused_input_tensors_[0].name = "image"; reused_input_tensors_[1].name = "scale_factor"; reused_input_tensors_[2].name = "im_shape"; // Some models don't need scale_factor and im_shape as input while (reused_input_tensors_.size() != NumInputsOfRuntime()) { reused_input_tensors_.pop_back(); } if (!Infer(reused_input_tensors_, &reused_output_tensors_)) { FDERROR << "Failed to inference by runtime." << std::endl; return false; } if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)){ FDERROR << "Failed to postprocess the inference results by runtime." << std::endl; return false; } return true; } } // namespace facedet } // namespace vision } // namespace fastdeploy