// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace facedet { /*! @brief SCRFD model object used when to load a SCRFD model exported by SCRFD. */ class FASTDEPLOY_DECL SCRFD : public FastDeployModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./scrfd.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends" * \param[in] model_format Model format of the loaded model, default is ONNX format */ SCRFD(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); std::string ModelName() const { return "scrfd"; } /** \brief Predict the face detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output face detection result will be writen to this structure * \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25 * \param[in] nms_iou_threshold iou threashold for NMS, default is 0.4 * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold = 0.25f, float nms_iou_threshold = 0.4f); /*! @brief Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default (640, 640) */ std::vector size; // padding value, size should be the same as channels std::vector padding_value; // only pad to the minimum rectange which height and width is times of stride bool is_mini_pad; // while is_mini_pad = false and is_no_pad = true, // will resize the image to the set size bool is_no_pad; // if is_scale_up is false, the input image only can be zoom out, // the maximum resize scale cannot exceed 1.0 bool is_scale_up; // padding stride, for is_mini_pad int stride; /*! @brief Argument for image postprocessing step, downsample strides (namely, steps) for SCRFD to generate anchors, will take (8,16,32) as default values */ std::vector downsample_strides; /*! @brief Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD */ int landmarks_per_face; /*! @brief Argument for image postprocessing step, the outputs of onnx file with key points features or not, default true */ bool use_kps; /*! @brief Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000 */ int max_nms; /*! @brief Argument for image postprocessing step, anchor number of each stride, default 2 */ unsigned int num_anchors; /// This function will disable normalize and hwc2chw in preprocessing step. void DisableNormalize(); /// This function will disable hwc2chw in preprocessing step. void DisablePermute(); private: bool Initialize(); bool Preprocess(Mat* mat, FDTensor* output, std::map>* im_info); bool Postprocess(std::vector& infer_result, FaceDetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold); void GeneratePoints(); void LetterBox(Mat* mat, const std::vector& size, const std::vector& color, bool _auto, bool scale_fill = false, bool scale_up = true, int stride = 32); bool is_dynamic_input_; bool center_points_is_update_; typedef struct { float cx; float cy; } SCRFDPoint; std::unordered_map> center_points_; // for recording the switch of normalize bool disable_normalize_ = false; // for recording the switch of hwc2chw bool disable_permute_ = false; }; } // namespace facedet } // namespace vision } // namespace fastdeploy