#include "fastdeploy/vision/detection/ppdet/base.h" #include "fastdeploy/utils/unique_ptr.h" #include "fastdeploy/vision/utils/utils.h" #include "yaml-cpp/yaml.h" namespace fastdeploy { namespace vision { namespace detection { PPDetBase::PPDetBase(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option, const ModelFormat& model_format) : preprocessor_(config_file), postprocessor_(preprocessor_.GetArch()) { runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; } std::unique_ptr PPDetBase::Clone() const { std::unique_ptr clone_model = fastdeploy::utils::make_unique(PPDetBase(*this)); clone_model->SetRuntime(clone_model->CloneRuntime()); return clone_model; } bool PPDetBase::Initialize() { if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool PPDetBase::Predict(cv::Mat* im, DetectionResult* result) { return Predict(*im, result); } bool PPDetBase::Predict(const cv::Mat& im, DetectionResult* result) { std::vector results; if (!BatchPredict({im}, &results)) { return false; } *result = std::move(results[0]); return true; } bool PPDetBase::BatchPredict(const std::vector& imgs, std::vector* results) { std::vector fd_images = WrapMat(imgs); if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) { FDERROR << "Failed to preprocess the input image." << std::endl; return false; } reused_input_tensors_[0].name = "image"; reused_input_tensors_[1].name = "scale_factor"; reused_input_tensors_[2].name = "im_shape"; if (NumInputsOfRuntime() == 1) { auto scale_factor = static_cast(reused_input_tensors_[1].Data()); postprocessor_.SetScaleFactor({scale_factor[0], scale_factor[1]}); } // Some models don't need scale_factor and im_shape as input while (reused_input_tensors_.size() != NumInputsOfRuntime()) { reused_input_tensors_.pop_back(); } if (!Infer(reused_input_tensors_, &reused_output_tensors_)) { FDERROR << "Failed to inference by runtime." << std::endl; return false; } if (!postprocessor_.Run(reused_output_tensors_, results)) { FDERROR << "Failed to postprocess the inference results by runtime." << std::endl; return false; } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy