// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/common/processors/stride_pad.h" namespace fastdeploy { namespace vision { bool StridePad::ImplByOpenCV(Mat* mat) { if (mat->layout != Layout::HWC) { FDERROR << "StridePad: The input data must be Layout::HWC format!" << std::endl; return false; } if (mat->Channels() > 4) { FDERROR << "StridePad: Only support channels <= 4." << std::endl; return false; } if (mat->Channels() != value_.size()) { FDERROR << "StridePad: Require input channels equals to size of padding value, " "but now channels = " << mat->Channels() << ", the size of padding values = " << value_.size() << "." << std::endl; return false; } int origin_w = mat->Width(); int origin_h = mat->Height(); int pad_h = (mat->Height() / stride_) * stride_ + (mat->Height() % stride_ != 0) * stride_ - mat->Height(); int pad_w = (mat->Width() / stride_) * stride_ + (mat->Width() % stride_ != 0) * stride_ - mat->Width(); if (pad_h == 0 && pad_w == 0) { return true; } cv::Mat* im = mat->GetOpenCVMat(); cv::Scalar value; if (value_.size() == 1) { value = cv::Scalar(value_[0]); } else if (value_.size() == 2) { value = cv::Scalar(value_[0], value_[1]); } else if (value_.size() == 3) { value = cv::Scalar(value_[0], value_[1], value_[2]); } else { value = cv::Scalar(value_[0], value_[1], value_[2], value_[3]); } // top, bottom, left, right cv::copyMakeBorder(*im, *im, 0, pad_h, 0, pad_w, cv::BORDER_CONSTANT, value); mat->SetHeight(origin_h + pad_h); mat->SetWidth(origin_w + pad_w); return true; } #ifdef ENABLE_FLYCV bool StridePad::ImplByFlyCV(Mat* mat) { if (mat->layout != Layout::HWC) { FDERROR << "StridePad: The input data must be Layout::HWC format!" << std::endl; return false; } if (mat->Channels() > 4) { FDERROR << "StridePad: Only support channels <= 4." << std::endl; return false; } if (mat->Channels() != value_.size()) { FDERROR << "StridePad: Require input channels equals to size of padding value, " "but now channels = " << mat->Channels() << ", the size of padding values = " << value_.size() << "." << std::endl; return false; } int origin_w = mat->Width(); int origin_h = mat->Height(); int pad_h = (mat->Height() / stride_) * stride_ + (mat->Height() % stride_ != 0) * stride_ - mat->Height(); int pad_w = (mat->Width() / stride_) * stride_ + (mat->Width() % stride_ != 0) * stride_ - mat->Width(); if (pad_h == 0 && pad_w == 0) { return true; } fcv::Mat* im = mat->GetFlyCVMat(); fcv::Scalar value; if (value_.size() == 1) { value = fcv::Scalar(value_[0]); } else if (value_.size() == 2) { value = fcv::Scalar(value_[0], value_[1]); } else if (value_.size() == 3) { value = fcv::Scalar(value_[0], value_[1], value_[2]); } else { value = fcv::Scalar(value_[0], value_[1], value_[2], value_[3]); } fcv::Mat new_im; // top, bottom, left, right fcv::copy_make_border(*im, new_im, 0, pad_h, 0, pad_w, fcv::BorderType::BORDER_CONSTANT, value); mat->SetMat(new_im); mat->SetHeight(new_im.height()); mat->SetWidth(new_im.width()); return true; } #endif #ifdef ENABLE_CVCUDA bool StridePad::ImplByCvCuda(FDMat* mat) { if (mat->layout != Layout::HWC) { FDERROR << "StridePad: The input data must be Layout::HWC format!" << std::endl; return false; } if (mat->Channels() > 4) { FDERROR << "StridePad: Only support channels <= 4." << std::endl; return false; } if (mat->Channels() != value_.size()) { FDERROR << "StridePad: Require input channels equals to size of padding value, " "but now channels = " << mat->Channels() << ", the size of padding values = " << value_.size() << "." << std::endl; return false; } int origin_w = mat->Width(); int origin_h = mat->Height(); int pad_h = (mat->Height() / stride_) * stride_ + (mat->Height() % stride_ != 0) * stride_ - mat->Height(); int pad_w = (mat->Width() / stride_) * stride_ + (mat->Width() % stride_ != 0) * stride_ - mat->Width(); if (pad_h == 0 && pad_w == 0) { return true; } float4 value; if (value_.size() == 1) { value = make_float4(value_[0], 0.0f, 0.0f, 0.0f); } else if (value_.size() == 2) { value = make_float4(value_[0], value_[1], 0.0f, 0.0f); } else if (value_.size() == 3) { value = make_float4(value_[0], value_[1], value_[2], 0.0f); } else { value = make_float4(value_[0], value_[1], value_[2], value_[3]); } // Prepare input tensor FDTensor* src = CreateCachedGpuInputTensor(mat); auto src_tensor = CreateCvCudaTensorWrapData(*src); int height = mat->Height() + pad_h; int width = mat->Width() + pad_w; // Prepare output tensor mat->output_cache->Resize({height, width, mat->Channels()}, mat->Type(), "output_cache", Device::GPU); auto dst_tensor = CreateCvCudaTensorWrapData(*(mat->output_cache)); cvcuda_pad_op_(mat->Stream(), *src_tensor, *dst_tensor, 0, 0, NVCV_BORDER_CONSTANT, value); mat->SetTensor(mat->output_cache); mat->mat_type = ProcLib::CVCUDA; return true; } #endif bool StridePad::Run(Mat* mat, int stride, const std::vector& value, ProcLib lib) { auto p = StridePad(stride, value); return p(mat, lib); } } // namespace vision } // namespace fastdeploy