import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--tinypose_model_dir", required=True, help="path of paddletinypose model directory") parser.add_argument( "--image", required=True, help="path of test image file.") return parser.parse_args() def build_tinypose_option(args): option = fd.RuntimeOption() option.use_rknpu() return option args = parse_arguments() tinypose_model_file = os.path.join(args.tinypose_model_dir, "PP_TinyPose_256x192_infer_rk3588_unquantized.rknn") tinypose_params_file = os.path.join(args.tinypose_model_dir, "") tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml") # 配置runtime,加载模型 runtime_option = build_tinypose_option(args) tinypose_model = fd.vision.keypointdetection.PPTinyPose( tinypose_model_file, tinypose_params_file, tinypose_config_file, runtime_option=runtime_option, model_format=fd.ModelFormat.RKNN) tinypose_model.disable_normalize() tinypose_model.disable_permute() # 预测图片检测结果 im = cv2.imread(args.image) tinypose_result = tinypose_model.predict(im) print("Paddle TinyPose Result:\n", tinypose_result) # 预测结果可视化 vis_im = fd.vision.vis_keypoint_detection( im, tinypose_result, conf_threshold=0.5) cv2.imwrite("visualized_result.jpg", vis_im) print("TinyPose visualized result save in ./visualized_result.jpg")