English | [简体中文](README_CN.md) # FSANet Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of FSANet on CPU/GPU and GPU accelerated by TensorRT. FastDeploy version 0.6.0 or above is required to support this model. The script is as follows ```bash # Download deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/headpose/fsanet/python # Download the FSANet model files and test images ## Original ONNX Model wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png # CPU inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device cpu # GPU inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu # TRT inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt ``` The visualized result after running is as follows