English | [简体中文](README_CN.md) # FSANet Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of FSANet on CPU/GPU and GPU accelerated by TensorRT. FastDeploy version 0.6.0 or above is required to support this model. The script is as follows ```bash # Download deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/headpose/fsanet/python # Download the FSANet model files and test images ## Original ONNX Model wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png # CPU inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device cpu # GPU inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu # TRT inference python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt ``` The visualized result after running is as follows
## FSANet Python Interface ```python fd.vision.headpose.FSANet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` FSANet model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > FSANet.predict(input_image) > ``` > > Model prediction interface. Input images and output head pose prediction results. > > **Parameter** > > > * **input_image**(np.ndarray): Input data in HWC or BGR format > **Return** > > > Return `fastdeploy.vision.HeadPoseResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure ## Other Documents - [FSANet Model Description](..) - [FSANet C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)