[English](README.md) | 简体中文 # YOLOv7Face C++部署示例 本目录下提供`infer.cc`快速完成YOLOv7Face在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 ```bash mkdir build cd build # 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2 tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2 cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.2 make -j #下载官方转换好的YOLOv7Face模型文件和测试图片 wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx #使用yolov7-tiny-face.onnx模型 # CPU推理 ./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 0 # GPU推理 ./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 1 # GPU上TensorRT推理 ./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 2 #使用yolov7-lite-e.onnx模型 # CPU推理 ./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 0 # GPU推理 ./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 1 # GPU上TensorRT推理 ./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 2 ``` 运行完成可视化结果如下图所示 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## YOLOv7Face C++接口 ### YOLOv7Face类 ```c++ fastdeploy::vision::facedet::YOLOv7Face( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` YOLOv7Face模型加载和初始化,其中model_file为导出的ONNX模型格式。 **参数** > * **model_file**(str): 模型文件路径 > * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可 > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 > * **model_format**(ModelFormat): 模型格式,默认为ONNX格式 #### Predict函数 > ```c++ > YOLOv7Face::Predict(cv::Mat* im, FaceDetectionResult* result, > float conf_threshold = 0.3, > float nms_iou_threshold = 0.5) > ``` > > 模型预测接口,输入图像直接输出检测结果。 > > **参数** > > > * **im**: 输入图像,注意需为HWC,BGR格式 > > * **result**: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/) > > * **conf_threshold**: 检测框置信度过滤阈值 > > * **nms_iou_threshold**: NMS处理过程中iou阈值 - [模型介绍](../../) - [Python部署](../python) - [视觉模型预测结果](../../../../../docs/api/vision_results/)