[English](README.md) | 简体中文 # SCRFD C++部署示例 本目录下提供`infer.cc`在RK356X上,快速完成SCRFD在NPU加速部署的示例。 在部署前,需确认以下两个步骤: 1. 软硬件环境满足要求 2. 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库 以上步骤请参考[RK2代NPU文档导航](../../../../../../docs/cn/build_and_install/rknpu2.md)实现 ## 编译 ```bash mkdir build cd build # 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-aarch64-rk356X-x.x.x.tgz tar -xzvf fastdeploy-linux-aarch64-rk356X-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-aarch64-rk356X make -j8 ``` ## 运行例程 ```bash #下载官方转换好的SCRFD模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/scrfd_500m_bnkps_shape640x640_rknpu2.zip unzip scrfd_500m_bnkps_shape640x640_rknpu2.zip wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg ./infer_demo scrfd_500m_bnkps_shape640x640_rknpu2/scrfd_500m_bnkps_shape640x640_rk3568_quantized.rknn \ test_lite_face_detector_3.jpg \ 1 ``` 运行完成可视化结果如下图所示 - [模型介绍](../../README.md) - [Python部署](../python/README.md) - [视觉模型预测结果](../../../../../../docs/api/vision_results/README.md)